Ad
related to: methane pressure table chart
Search results
Results From The WOW.Com Content Network
Table data obtained from CRC Handbook of Chemistry and Physics 44th ed. Annotation "(s)" indicates equilibrium temperature of vapor over solid. Otherwise temperature is equilibrium of vapor over liquid. Note that these are all negative temperature values. Methane vapor pressure vs. temperature.
Values are given in terms of temperature necessary to reach the specified pressure. Valid results within the quoted ranges from most equations are included in the table for comparison. A conversion factor is included into the original first coefficients of the equations to provide the pressure in pascals (CR2: 5.006, SMI: -0.875).
On the left-hand vertical axis, locate and mark the point containing the pressure 100 psia. On the right-hand vertical axis, locate and mark the point containing the temperature 60°F. Connect the points with a straight line. Note where the line crosses the methane axis. Read this K-value off the chart (approximately 21.3).
Methane (US: / ˈ m ɛ θ eɪ n / METH-ayn, UK: / ˈ m iː θ eɪ n / MEE-thayn) is a chemical compound with the chemical formula CH 4 (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas.
Any mixture of methane and air will therefore lie on the straight line between pure methane and pure air – this is shown as the blue air-line. The upper and lower flammability limits of methane in air are located on this line, as shown (labelled UEL and LEL, respectively). The stoichiometric combustion of methane is: CH 4 + 2O 2 → CO 2 + 2H ...
A Assuming an altitude of 194 metres above mean sea level (the worldwide median altitude of human habitation), an indoor temperature of 23 °C, a dewpoint of 9 °C (40.85% relative humidity), and 760 mmHg sea level–corrected barometric pressure (molar water vapor content = 1.16%). B Calculated values *Derived data by calculation.
The following table lists the Van der Waals constants (from the Van der Waals equation) for a number of common gases and volatile liquids. [ 1 ] To convert from L 2 b a r / m o l 2 {\displaystyle \mathrm {L^{2}bar/mol^{2}} } to L 2 k P a / m o l 2 {\displaystyle \mathrm {L^{2}kPa/mol^{2}} } , multiply by 100.
Once two of the three reduced properties are found, the compressibility chart can be used. In a compressibility chart, reduced pressure is on the x-axis and Z is on the y-axis. When given the reduced pressure and temperature, find the given pressure on the x-axis. From there, move up on the chart until the given reduced temperature is found.