When.com Web Search

  1. Ad

    related to: robertson seymour theorem practice

Search results

  1. Results From The WOW.Com Content Network
  2. Robertson–Seymour theorem - Wikipedia

    en.wikipedia.org/wiki/RobertsonSeymour_theorem

    The RobertsonSeymour theorem is named after mathematicians Neil Robertson and Paul D. Seymour, who proved it in a series of twenty papers spanning over 500 pages from 1983 to 2004. [3] Before its proof, the statement of the theorem was known as Wagner's conjecture after the German mathematician Klaus Wagner , although Wagner said he never ...

  3. Non-constructive algorithm existence proofs - Wikipedia

    en.wikipedia.org/wiki/Non-constructive_algorithm...

    The non-constructive part here is the RobertsonSeymour theorem. Although it guarantees that there is a finite number of minor-minimal elements it does not tell us what these elements are. Therefore, we cannot really execute the "algorithm" mentioned above. But, we do know that an algorithm exists and that its runtime is polynomial.

  4. Friedman's SSCG function - Wikipedia

    en.wikipedia.org/wiki/Friedman's_SSCG_function

    The RobertsonSeymour theorem proves that subcubic graphs (simple or not) are well-founded by homeomorphic embeddability, implying such a sequence cannot be infinite. Then, by applying Kőnig's lemma on the tree of such sequences under extension, for each value of k there is a sequence with maximal length.

  5. Graph minor - Wikipedia

    en.wikipedia.org/wiki/Graph_minor

    Another result relating the four-color theorem to graph minors is the snark theorem announced by Robertson, Sanders, Seymour, and Thomas, a strengthening of the four-color theorem conjectured by W. T. Tutte and stating that any bridgeless 3-regular graph that requires four colors in an edge coloring must have the Petersen graph as a minor. [15]

  6. Graph structure theorem - Wikipedia

    en.wikipedia.org/wiki/Graph_structure_theorem

    The theorem is stated in the seventeenth of a series of 23 papers by Neil Robertson and Paul Seymour. Its proof is very long and involved. Its proof is very long and involved. Kawarabayashi & Mohar (2007) and Lovász (2006) are surveys accessible to nonspecialists, describing the theorem and its consequences.

  7. Matroid minor - Wikipedia

    en.wikipedia.org/wiki/Matroid_minor

    The RobertsonSeymour theorem implies that every matroid property of graphic matroids characterized by a list of forbidden minors can be characterized by a finite list. Another way of saying the same thing is that the partial order on graphic matroids formed by the minor operation is a well-quasi-ordering .

  8. Well-quasi-ordering - Wikipedia

    en.wikipedia.org/wiki/Well-quasi-ordering

    This follows from Laver's theorem and a theorem of Ketonen. Finite graphs ordered by a notion of embedding called " graph minor " is a well-quasi-order ( RobertsonSeymour theorem ). Graphs of finite tree-depth ordered by the induced subgraph relation form a well-quasi-order, [ 3 ] as do the cographs ordered by induced subgraphs.

  9. Neil Robertson (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Neil_Robertson_(mathematician)

    Robertson has won the Fulkerson Prize three times, in 1994 for his work on the Hadwiger conjecture, in 2006 for the RobertsonSeymour theorem, and in 2009 for his proof of the strong perfect graph theorem. [11] He also won the Pólya Prize (SIAM) in 2004, the OSU Distinguished Scholar Award in 1997, and the Waterloo Alumni Achievement Medal ...