When.com Web Search

  1. Ad

    related to: how to calculate equivalent concentration of two steps in one form of energy

Search results

  1. Results From The WOW.Com Content Network
  2. Equivalent concentration - Wikipedia

    en.wikipedia.org/wiki/Equivalent_concentration

    For example, sulfuric acid (H 2 SO 4) is a diprotic acid. Since only 0.5 mol of H 2 SO 4 are needed to neutralize 1 mol of OH −, the equivalence factor is: feq (H 2 SO 4) = 0.5. If the concentration of a sulfuric acid solution is c (H 2 SO 4) = 1 mol/L, then its normality is 2 N. It can also be called a "2 normal" solution.

  3. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. [1] The activation energy (Ea) of a reaction is measured in kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol). [2] Activation energy can be thought of as the magnitude ...

  4. Butler–Volmer equation - Wikipedia

    en.wikipedia.org/wiki/Butler–Volmer_equation

    The reaction will proceed towards the lower energy - reducing for the blue curve, oxidizing for the red curve. The green curve illustrates equilibrium. The following derivation of the extended Butler–Volmer equation is adapted from that of Bard and Faulkner [3] and Newman and Thomas-Alyea. [5] For a simple unimolecular, one-step reaction of ...

  5. Transition state - Wikipedia

    en.wikipedia.org/wiki/Transition_state

    In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. [1] It is often marked with the double dagger (‡) symbol. As an example, the transition state shown below occurs during ...

  6. Lindemann mechanism - Wikipedia

    en.wikipedia.org/wiki/Lindemann_mechanism

    It breaks down an apparently unimolecular reaction into two elementary steps, with a rate constant for each elementary step. The rate law and rate equation for the entire reaction can be derived from the rate equations and rate constants for the two steps. The Lindemann mechanism is used to model gas phase decomposition or isomerization reactions.

  7. Chemical equilibrium - Wikipedia

    en.wikipedia.org/wiki/Chemical_equilibrium

    Chemical equilibrium. In a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the system. [1] This state results when the forward reaction proceeds at the same ...

  8. Beer–Lambert law - Wikipedia

    en.wikipedia.org/wiki/Beer–Lambert_law

    The Beer–Lambert law is commonly applied to chemical analysis measurements to determine the concentration of chemical species that absorb light. It is often referred to as Beer's law . In physics , the Bouguer–Lambert law is an empirical law which relates the extinction or attenuation of light to the properties of the material through which ...

  9. Adsorption - Wikipedia

    en.wikipedia.org/wiki/Adsorption

    Adsorption is the adhesion [1] of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. [2] This process creates a film of the adsorbate on the surface of the adsorbent. This process differs from absorption, in which a fluid (the absorbate) is dissolved by or permeates a liquid or solid (the absorbent). [3]