When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.

  3. Confidence interval - Wikipedia

    en.wikipedia.org/wiki/Confidence_interval

    The confidence interval can be expressed in terms of statistical significance, e.g.: "The 95% confidence interval represents values that are not statistically significantly different from the point estimate at the .05 level." [20] Interpretation of the 95% confidence interval in terms of statistical significance.

  4. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    If a data distribution is approximately normal then about 68 percent of the data values are within one standard deviation of the mean (mathematically, μ ± σ, where μ is the arithmetic mean), about 95 percent are within two standard deviations (μ ± 2σ), and about 99.7 percent lie within three standard deviations (μ ± 3σ).

  5. Margin of error - Wikipedia

    en.wikipedia.org/wiki/Margin_of_error

    This interval is called the confidence interval, and the radius (half the interval) is called the margin of error, corresponding to a 95% confidence level. Generally, at a confidence level γ {\displaystyle \gamma } , a sample sized n {\displaystyle n} of a population having expected standard deviation σ {\displaystyle \sigma } has a margin of ...

  6. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    About 68% of values drawn from a normal distribution are within one standard deviation σ from the mean; about 95% of the values lie within two standard deviations; and about 99.7% are within three standard deviations. [8] This fact is known as the 68–95–99.7 (empirical) rule, or the 3-sigma rule.

  7. 97.5th percentile point - Wikipedia

    en.wikipedia.org/wiki/97.5th_percentile_point

    The approximate value of this number is 1.96, meaning that 95% of the area under a normal curve lies within approximately 1.96 standard deviations of the mean. Because of the central limit theorem, this number is used in the construction of approximate 95% confidence intervals. Its ubiquity is due to the arbitrary but common convention of using ...

  8. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    The dependence of the confidence intervals on sample size is further illustrated below. For N = 10, the 95% confidence interval is approximately ±13.5789 standard deviations. For N = 100 the 95% confidence interval is approximately ±4.9595 standard deviations; the 99% confidence interval is approximately ±140.0 standard deviations.

  9. Prediction interval - Wikipedia

    en.wikipedia.org/wiki/Prediction_interval

    If one makes the parametric assumption that the underlying distribution is a normal distribution, and has a sample set {X 1, ..., X n}, then confidence intervals and credible intervals may be used to estimate the population mean μ and population standard deviation σ of the underlying population, while prediction intervals may be used to estimate the value of the next sample variable, X n+1.