Search results
Results From The WOW.Com Content Network
A repeating decimal is an infinite decimal that, after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123 144). [4] An infinite decimal represents a rational number , the quotient of two integers, if and only if it is a repeating decimal or has a finite number of non-zero digits.
In the decimal system, there are 10 digits, 0 through 9, which combine to form numbers. In an octal system, there are only 8 digits, 0 through 7. That is, the value of an octal "10" is the same as a decimal "8", an octal "20" is a decimal "16", and so on.
As an example, a 4-byte value consists of 8 nibbles, wherein the upper 7 nibbles store the digits of a 7-digit decimal value, and the lowest nibble indicates the sign of the decimal integer value. Standard sign values are 1100 ( hex C) for positive (+) and 1101 (D) for negative (−).
Decimal: The standard Hindu–Arabic numeral system using base ten. Binary: The base-two numeral system used by computers, with digits 0 and 1. Ternary: The base-three numeral system with 0, 1, and 2 as digits. Quaternary: The base-four numeral system with 0, 1, 2, and 3 as digits.
Some real numbers have two infinite decimal representations. For example, the number 1 may be equally represented by 1.000... as by 0.999... (where the infinite sequences of trailing 0's or 9's, respectively, are represented by "..."). Conventionally, the decimal representation without trailing 9's is preferred.
For example, in the decimal system (base 10), the numeral 4327 means (4×10 3) + (3×10 2) + (2×10 1) + (7×10 0), noting that 10 0 = 1. In general, if b is the base, one writes a number in the numeral system of base b by expressing it in the form a n b n + a n − 1 b n − 1 + a n − 2 b n − 2 + ... + a 0 b 0 and writing the enumerated ...
For example, decimal (base 10) requires ten digits (0 to 9), and binary (base 2) requires only two digits (0 and 1). Bases greater than 10 require more than 10 digits, for instance hexadecimal (base 16) requires 16 digits (usually 0 to 9 and A to F).
The Aiken code (also known as 2421 code) [1] [2] is a complementary binary-coded decimal (BCD) code. A group of four bits is assigned to the decimal digits from 0 to 9 according to the following table. The code was developed by Howard Hathaway Aiken and is still used today in digital clocks, pocket calculators and similar devices [citation needed].