Search results
Results From The WOW.Com Content Network
The apparent magnitude of asteroids varies as they rotate, on time scales of seconds to weeks depending on their rotation period, by up to or more. [30] In addition, their absolute magnitude can vary with the viewing direction, depending on their axial tilt. In many cases, neither the rotation period nor the axial tilt are known, limiting the ...
The absolute magnitude M, of a star or astronomical object is defined as the apparent magnitude it would have as seen from a distance of 10 parsecs (33 ly). The absolute magnitude of the Sun is 4.83 in the V band (visual), 4.68 in the Gaia satellite's G band (green) and 5.48 in the B band (blue). [20] [21] [22]
Apparent magnitude, the brightness of an object as it appears in the night sky. Absolute magnitude, which measures the luminosity of an object (or reflected light for non-luminous objects like asteroids); it is the object's apparent magnitude as seen from a specific distance, conventionally 10 parsecs (32.6 light years).
If the star lies on the main sequence, as determined by its luminosity class, the spectral type of the star provides a good estimate of the star's absolute magnitude. Knowing the apparent magnitude (m) and absolute magnitude (M) of the star, one can calculate the distance (d, in parsecs) of the star using m − M = 5 log ( d / 10 ...
The relation is less clear for distant objects like quasars far beyond the Milky Way since the apparent magnitude is affected by spacetime curvature, redshift, and time dilation. Calculating the relation between the apparent and actual luminosity of an object requires taking all of these factors into account.
The apparent magnitude, the magnitude as seen by the observer (an instrument called a bolometer is used), can be measured and used with the absolute magnitude to calculate the distance d to the object in parsecs [14] as follows: = + or = (+) / where m is the apparent magnitude, and M the absolute magnitude. For this to be accurate, both ...
The brightness usually refers the object's absolute magnitude, which, in turn, is its apparent magnitude at a distance of one astronomical unit from the Earth and Sun. The phase curve is useful for characterizing an object's regolith (soil) and atmosphere. It is also the basis for computing the geometrical albedo and the Bond albedo of the body.
AB stands for "absolute" in the sense that no relative reference object is used (unlike using Vega as a baseline object). [3] This must not be confused with absolute magnitude in the sense of the apparent brightness of an object if seen from a distance of 10 parsecs.