When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...

  3. Quadratic sieve - Wikipedia

    en.wikipedia.org/wiki/Quadratic_sieve

    To factorize the integer n, Fermat's method entails a search for a single number a, n 1/2 < a < n−1, such that the remainder of a 2 divided by n is a square. But these a are hard to find. The quadratic sieve consists of computing the remainder of a 2 /n for several a, then finding a subset of these whose product is a square. This will yield a ...

  4. Congruence of squares - Wikipedia

    en.wikipedia.org/wiki/Congruence_of_squares

    The set of small primes which all the y factor into is called the factor base. Construct a logical matrix where each row describes one y, each column corresponds to one prime in the factor base, and the entry is the parity (even or odd) of the number of times that factor occurs in y. Our goal is to select a subset of rows whose sum is the all ...

  5. Category:Integer factorization algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Integer...

    Dixon's factorization method; E. Euler's factorization method; F. Factor base; Fast Library for Number Theory; Fermat's factorization method; G. General number field ...

  6. Number theory - Wikipedia

    en.wikipedia.org/wiki/Number_theory

    Joseph-Louis Lagrange (1736–1813) was the first to give full proofs of some of Fermat's and Euler's work and observations—for instance, the four-square theorem and the basic theory of the misnamed "Pell's equation" (for which an algorithmic solution was found by Fermat and his contemporaries, and also by Jayadeva and Bhaskara II before them.)

  7. Pierre de Fermat - Wikipedia

    en.wikipedia.org/wiki/Pierre_de_Fermat

    It was while researching perfect numbers that he discovered Fermat's little theorem. He invented a factorization methodFermat's factorization method—and popularized the proof by infinite descent, which he used to prove Fermat's right triangle theorem which includes as a corollary Fermat's Last Theorem for the case n = 4.

  8. Talk:Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Talk:Fermat's_factorization...

    -in order for a² - N to be square. As you can notice, all even N are skipped - Fermat method does not test them.. Example in hexadecimal format: Let N be 1751 16. The right digit of N is 1, from table, right digit of a can only be 1,7,9 or F. √1751 16 = 4E, so we test for a only 4F, 51, 57 and get result a² - N = 57 16 2 - 1751 16 as a perfect square.

  9. Shanks's square forms factorization - Wikipedia

    en.wikipedia.org/wiki/Shanks's_square_forms...

    Shanks' square forms factorization is a method for integer factorization devised by Daniel Shanks as an improvement on Fermat's factorization method. The success of Fermat's method depends on finding integers x {\displaystyle x} and y {\displaystyle y} such that x 2 − y 2 = N {\displaystyle x^{2}-y^{2}=N} , where N {\displaystyle N} is the ...