Search results
Results From The WOW.Com Content Network
Given a vector bundle of rank , and any representation : (,) into a linear group (), there is an induced connection on the associated vector bundle =. This theory is most succinctly captured by passing to the principal bundle connection on the frame bundle of E {\displaystyle E} and using the theory of principal bundles.
If is a vector bundle, there is one-to-one correspondence between linear connections on and the connections on the ()-module of sections of . Strictly speaking, ∇ {\displaystyle \nabla } corresponds to the covariant differential of a connection on E → X {\displaystyle E\to X} .
The definition may be phrased for a connection on a vector bundle or principal bundle, with the two perspectives being essentially interchangeable. Here the definition of principal bundles is presented, which is the form that appears in Hitchin's work. [1] [5] [6]
The bundle TP/G is called the bundle of principal connections (Kobayashi 1957). A section Γ of dπ:TP/G→TM such that Γ : TM → TP/G is a linear morphism of vector bundles over M, can be identified with a principal connection in P. Conversely, a principal connection as defined above gives rise to such a section Γ of TP/G.
A connection on a vector bundle may be specified similarly to the case for principal bundles above, known as an Ehresmann connection. However vector bundle connections admit a more powerful description in terms of a differential operator. A connection on a vector bundle is a choice of -linear differential operator
Vector bundle morphisms are a special case of the notion of a bundle map between fiber bundles, and are sometimes called (vector) bundle homomorphisms. A bundle homomorphism from E 1 to E 2 with an inverse which is also a bundle homomorphism (from E 2 to E 1) is called a (vector) bundle isomorphism, and then E 1 and E 2 are said to be ...
It is not always possible for an Ehresmann connection to induce, in a natural way, a connection on an associated bundle. For example, a non-equivariant Ehresmann connection on a bundle of frames of a vector bundle may not induce a connection on the vector bundle. Suppose that E is an associated bundle of P, so that E = P × G F.
Binary compatible operating systems are OSes that aim to implement binary compatibility with another OS, or another variant of the same brand. This means that they are ABI-compatible (for application binary interface). As the job of an OS is to run programs, the instruction set architectures running the OSes have to be the same or compatible.