Search results
Results From The WOW.Com Content Network
In statistics, a truncated distribution is a conditional distribution that results from restricting the domain of some other probability distribution.Truncated distributions arise in practical statistics in cases where the ability to record, or even to know about, occurrences is limited to values which lie above or below a given threshold or within a specified range.
The Gamma distribution, which describes the time until n consecutive rare random events occur in a process with no memory. The Erlang distribution, which is a special case of the gamma distribution with integral shape parameter, developed to predict waiting times in queuing systems; The inverse-gamma distribution; The generalized gamma distribution
The gamma distribution is a two-parameter exponential family with natural parameters α − 1 and −1/θ (equivalently, α − 1 and −λ), and natural statistics X and ln X. If the shape parameter α is held fixed, the resulting one-parameter family of distributions is a natural exponential family.
It is a generalization of the gamma distribution which has one shape parameter (and a scale parameter). Since many distributions commonly used for parametric models in survival analysis (such as the exponential distribution , the Weibull distribution and the gamma distribution ) are special cases of the generalized gamma, it is sometimes used ...
The scale parameter of the untruncated normal distribution must be positive because the distribution would not be normalizable otherwise. The doubly truncated normal distribution, on the other hand, can in principle have a negative scale parameter (which is different from the variance, see summary formulae), because no such integrability ...
It can be viewed as a generalization of multiple families, including the half-normal distribution, truncated normal distribution, gamma distribution, and square root of the gamma distribution, all of which are special cases of the MHN distribution. Therefore, it is a flexible probability model for analyzing real-valued positive data.
If Y has a half-normal distribution, then (Y/σ) 2 has a chi square distribution with 1 degree of freedom, i.e. Y/σ has a chi distribution with 1 degree of freedom. The half-normal distribution is a special case of the generalized gamma distribution with d = 1, p = 2, a = 2 σ {\displaystyle {\sqrt {2}}\sigma } .
When β = 1, this reduces to an Exponential distribution with parameter sb.; The gamma distribution is a natural conjugate prior to a Gompertz likelihood with known, scale parameter . [1]