Search results
Results From The WOW.Com Content Network
An obtuse triangle (or obtuse-angled triangle) is a triangle with one obtuse angle (greater than 90°) and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry , no Euclidean triangle can have more than one obtuse angle.
The heptagonal triangle's orthic triangle, with vertices at the feet of the altitudes, is similar to the heptagonal triangle, with similarity ratio 1:2. The heptagonal triangle is the only obtuse triangle that is similar to its orthic triangle (the equilateral triangle being the only acute one). [2]: pp. 12–13
If a 2 + b 2 < c 2, then the triangle is obtuse. Edsger W. Dijkstra has stated this proposition about acute, right, and obtuse triangles in this language: sgn(α + β − γ) = sgn(a 2 + b 2 − c 2), where α is the angle opposite to side a, β is the angle opposite to side b, γ is the angle opposite to side c, and sgn is the sign function. [30]
When obtuse triangles are glued in this way, the resulting surface can be folded to form a disphenoid (by Alexandrov's uniqueness theorem) but one with acute triangle faces and with edges that in general do not lie along the edges of the given obtuse triangles. Two more types of tetrahedron generalize the disphenoid and have similar names.
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);
Obtuse may refer to: Obtuse angle, an angle of between 90 and 180 degrees; Obtuse triangle, a triangle with an internal angle of between 90 and 180 degrees; Obtuse leaf shape; Obtuse tepal shape; Obtuse barracuda, a ray-finned fish; Obtuse, a neighborhood in Brookfield, Connecticut
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.
Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.