Ad
related to: two linear equations no solution infinite solutions and one solutions definition
Search results
Results From The WOW.Com Content Network
In mathematics, particularly in algebra, an indeterminate system is a system of simultaneous equations (e.g., linear equations) which has more than one solution (sometimes infinitely many solutions). [1] In the case of a linear system, the system may be said to be underspecified, in which case the presence of more than one solution would imply ...
In general, an underdetermined system of linear equations has an infinite number of solutions, if any. However, in optimization problems that are subject to linear equality constraints, only one of the solutions is relevant, namely the one giving the highest or lowest value of an objective function.
A system of equations is said to be inconsistent when there are no solutions and it is called indeterminate when there is more than one solution. For linear equations, an indeterminate system will have infinitely many solutions (if it is over an infinite field), since the solutions can be expressed in terms of one or more parameters that can ...
The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...
Two systems are equivalent if either both are inconsistent or each equation of each of them is a linear combination of the equations of the other one. It follows that two linear systems are equivalent if and only if they have the same solution set.
There are two cases, depending on the number of linearly dependent equations: either there is just the trivial solution, or there is the trivial solution plus an infinite set of other solutions. Consider the system of linear equations: L i = 0 for 1 ≤ i ≤ M , and variables X 1 , X 2 , ..., X N , where each L i is a weighted sum of the X i s.
However, if one searches for real solutions, there are two solutions, √ 2 and – √ 2; in other words, the solution set is {√ 2, − √ 2}. When an equation contains several unknowns, and when one has several equations with more unknowns than equations, the solution set is often infinite. In this case, the solutions cannot be listed.
For example, the equation + = is a simple indeterminate equation, as is =. Indeterminate equations cannot be solved uniquely. In fact, in some cases it might even have infinitely many solutions. [2] Some of the prominent examples of indeterminate equations include: Univariate polynomial equation: