Search results
Results From The WOW.Com Content Network
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
The Karatsuba square root algorithm is a combination of two functions: a public function, which returns the integer square root of the input, and a recursive private function, which does the majority of the work. The public function normalizes the actual input, passes the normalized input to the private function, denormalizes the result of the ...
CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...
For finding one root, Newton's method and other general iterative methods work generally well. For finding all the roots, arguably the most reliable method is the Francis QR algorithm computing the eigenvalues of the companion matrix corresponding to the polynomial, implemented as the standard method [1] in MATLAB.
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
The simplest form of the formula for Steffensen's method occurs when it is used to find a zero of a real function; that is, to find the real value that satisfies () =.Near the solution , the derivative of the function, ′, is supposed to approximately satisfy < ′ <; this condition ensures that is an adequate correction-function for , for finding its own solution, although it is not required ...
Newton's method is one of many known methods of computing square roots. Given a positive number a, the problem of finding a number x such that x 2 = a is equivalent to finding a root of the function f(x) = x 2 − a. The Newton iteration defined by this function is given by
A matrix B is said to be a square root of A if the matrix product BB is equal to A. [1] Some authors use the name square root or the notation A 1/2 only for the specific case when A is positive semidefinite, to denote the unique matrix B that is positive semidefinite and such that BB = B T B = A (for real-valued matrices, where B T is the ...