When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    A select few examples include kinetics of self-catalytic enzymes, cooperative and allosteric enzymes, interfacial and intracellular enzymes, processive enzymes and so forth. Some enzymes produce a sigmoid v by [S] plot, which often indicates cooperative binding of substrate to the active site.

  3. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten_kinetics

    The model is used in a variety of biochemical situations other than enzyme-substrate interaction, including antigen–antibody binding, DNA–DNA hybridization, and protein–protein interaction. [ 17 ] [ 18 ] It can be used to characterize a generic biochemical reaction, in the same way that the Langmuir equation can be used to model generic ...

  4. Reversible Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Reversible_Michaelis...

    When used to model enzyme rates in vivo , for example, to model a metabolic pathway, this representation is inadequate because under these conditions product is present. As a result, when building computer models of metabolism [ 1 ] or other enzymatic processes, it is better to use the reversible form of the Michaelis–Menten equation.

  5. Competitive inhibition - Wikipedia

    en.wikipedia.org/wiki/Competitive_inhibition

    The Michaelis–Menten Model can be an invaluable tool to understanding enzyme kinetics. According to this model, a plot of the reaction velocity (V 0) associated with the concentration [S] of the substrate can then be used to determine values such as V max, initial velocity, and K m (V max /2 or affinity of enzyme to substrate complex). [4]

  6. Specificity constant - Wikipedia

    en.wikipedia.org/wiki/Specificity_constant

    A comparison of specificity constants can also be used as a measure of the preference of an enzyme for different substrates (i.e., substrate specificity). The higher the specificity constant, the more the enzyme "prefers" that substrate. [1] The following equation, known as the Michaelis–Menten model, is used to describe the kinetics of enzymes:

  7. Substrate inhibition in bioreactors - Wikipedia

    en.wikipedia.org/wiki/Substrate_inhibition_in...

    One of the most well known equations to describe single-substrate enzyme kinetics is the Michaelis-Menten equation. This equation relates the initial rate of reaction to the concentration of substrate present, and deviations of model can be used to predict competitive inhibition and non-competitive inhibition. The model takes the form of the ...

  8. Eadie–Hofstee diagram - Wikipedia

    en.wikipedia.org/wiki/Eadie–Hofstee_diagram

    Eadie–Hofstee plot of v against v/a for Michaelis–Menten kinetics. In biochemistry, an Eadie–Hofstee plot (or Eadie–Hofstee diagram) is a graphical representation of the Michaelis–Menten equation in enzyme kinetics. It has been known by various different names, including Eadie plot, Hofstee plot and Augustinsson plot.

  9. Lineweaver–Burk plot - Wikipedia

    en.wikipedia.org/wiki/Lineweaver–Burk_plot

    An example of a Lineweaver–Burk plot of 1/v against 1/a. In biochemistry, the Lineweaver–Burk plot (or double reciprocal plot) is a graphical representation of the Michaelis–Menten equation of enzyme kinetics, described by Hans Lineweaver and Dean Burk in 1934. [1]