When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Python syntax and semantics - Wikipedia

    en.wikipedia.org/wiki/Python_syntax_and_semantics

    Python supports normal floating point numbers, which are created when a dot is used in a literal (e.g. 1.1), when an integer and a floating point number are used in an expression, or as a result of some mathematical operations ("true division" via the / operator, or exponentiation with a negative exponent). Python also supports complex numbers ...

  3. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    Namely, an attacker observing the sequence of squarings and multiplications can (partially) recover the exponent involved in the computation. This is a problem if the exponent should remain secret, as with many public-key cryptosystems. A technique called "Montgomery's ladder" [2] addresses this concern.

  4. Mathematical operators and symbols in Unicode - Wikipedia

    en.wikipedia.org/wiki/Mathematical_operators_and...

    The reserved code points (the "holes") in the alphabetic ranges up to U+1D551 duplicate characters in the Letterlike Symbols block. In order, these are ℎ / ℬ ℰ ℱ ℋ ℐ ℒ ℳ ℛ / ℯ ℊ ℴ / ℭ ℌ ℑ ℜ ℨ / ℂ ℍ ℕ ℙ ℚ ℝ ℤ.

  5. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    In expressions such as , the notation for exponentiation is usually to write the exponent as a superscript to the base number .But many environments — such as programming languages and plain-text e-mail — do not support superscript typesetting.

  6. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Exponentiation with negative exponents is defined by the following identity, which holds for any integer n and nonzero b: =. [1] Raising 0 to a negative exponent is undefined but, in some circumstances, it may be interpreted as infinity (). [24]

  7. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Inputs An integer b (base), integer e (exponent), and a positive integer m (modulus) Outputs The modular exponent c where c = b e mod m. Initialise c = 1 and loop variable e′ = 0; While e′ < e do Increment e′ by 1; Calculate c = (b ⋅ c) mod m; Output c; Note that at the end of every iteration through the loop, the equation c ≡ b e ...

  8. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    The exponent field is an 8-bit unsigned integer from 0 to 255, in biased form: a value of 127 represents the actual exponent zero. Exponents range from −126 to +127 (thus 1 to 254 in the exponent field), because the biased exponent values 0 (all 0s) and 255 (all 1s) are reserved for special numbers ( subnormal numbers , signed zeros ...

  9. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied. Languages that support a rational data type usually allow the construction of such a value from two integers, instead of a base-2 floating-point number, due to the loss of exactness the latter would cause.