Search results
Results From The WOW.Com Content Network
In the theory of computation, a branch of theoretical computer science, a pushdown automaton (PDA) is a type of automaton that employs a stack. Pushdown automata are used in theories about what can be computed by machines. They are more capable than finite-state machines but less capable than Turing machines (see below).
An embedded pushdown automaton or EPDA is a computational model for parsing languages generated by tree-adjoining grammars (TAGs). It is similar to the context-free grammar-parsing pushdown automaton, but instead of using a plain stack to store symbols, it has a stack of iterated stacks that store symbols, giving TAGs a generative capacity between context-free and context-sensitive grammars ...
In automata theory, a deterministic pushdown automaton (DPDA or DPA) is a variation of the pushdown automaton. The class of deterministic pushdown automata accepts the deterministic context-free languages , a proper subset of context-free languages .
The earlier concept of Turing machine was also included in the discipline along with new forms of infinite-state automata, such as pushdown automata. 1956 saw the publication of Automata Studies, which collected work by scientists including Claude Shannon, W. Ross Ashby, John von Neumann, Marvin Minsky, Edward F. Moore, and Stephen Cole Kleene. [4]
NFAs have been generalized in multiple ways, e.g., nondeterministic finite automata with ε-moves, finite-state transducers, pushdown automata, alternating automata, ω-automata, and probabilistic automata. Besides the DFAs, other known special cases of NFAs are unambiguous finite automata (UFA) and self-verifying finite automata (SVFA).
The set of all context-free languages is identical to the set of languages accepted by pushdown automata, which makes these languages amenable to parsing.Further, for a given CFG, there is a direct way to produce a pushdown automaton for the grammar (and thereby the corresponding language), though going the other way (producing a grammar given an automaton) is not as direct.
Automata theory is the study of abstract machines (or more appropriately, abstract 'mathematical' machines or systems) and the computational problems that can be solved using these machines. These abstract machines are called automata. Automata comes from the Greek word (Αυτόματα) which means that something is doing something by itself.
The notion of the DCFL is closely related to the deterministic pushdown automaton (DPDA). It is where the language power of pushdown automata is reduced to if we make them deterministic; the pushdown automata become unable to choose between different state-transition alternatives and as a consequence cannot recognize all context-free languages. [1]