Search results
Results From The WOW.Com Content Network
Example of a reduction–oxidation reaction between sodium and chlorine, with the OIL RIG mnemonic [1] Redox (/ ˈ r ɛ d ɒ k s / RED-oks, / ˈ r iː d ɒ k s / REE-doks, reduction–oxidation [2] or oxidation–reduction [3]: 150 ) is a type of chemical reaction in which the oxidation states of the reactants change. [4]
The following table provides the reduction potentials of the indicated reducing agent at 25 °C. For example, among sodium (Na), chromium (Cr), cuprous (Cu +) and chloride (Cl −), it is Na that is the strongest reducing agent while Cl − is the weakest; said differently, Na + is the weakest oxidizing agent in this list while Cl is the strongest.
Organic redox reactions: the Birch reduction. Organic reductions or organic oxidations or organic redox reactions are redox reactions that take place with organic compounds.In organic chemistry oxidations and reductions are different from ordinary redox reactions, because many reactions carry the name but do not actually involve electron transfer. [1]
The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).
Corey–Gilman–Ganem oxidation; Corey–Kim oxidation; Corey-Nicolaou macrolactonization; Corey–Posner, Whitesides–House reaction; Corey-Seebach reaction; Corey–Winter olefin synthesis; Corey–Winter reaction; Cornforth rearrangement; Coupling reaction; Crabbé reaction; Craig method; Cram's rule of asymmetric induction; Creighton ...
Baeyer–Villiger oxidation; Barton–McCombie deoxygenation; Béchamp reduction; Benkeser reaction; Bergmann degradation; Birch reduction; Bohn–Schmidt reaction; Bosch reaction; Bouveault–Blanc reduction; Boyland–Sims oxidation
Reductive elimination is an elementary step in organometallic chemistry in which the oxidation state of the metal center decreases while forming a new covalent bond between two ligands. It is the microscopic reverse of oxidative addition, and is often the product-forming step in many catalytic processes. Since oxidative addition and reductive ...
For oxidation-reduction reactions in acidic conditions, after balancing the atoms and oxidation numbers, one will need to add H + ions to balance the hydrogen ions in the half reaction. For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH − ...