Search results
Results From The WOW.Com Content Network
Pressure experiments are experiments performed at pressures lower or higher than atmospheric pressure, called low-pressure experiments and high-pressure experiments, respectively. Pressure experiment are necessary because substances behave differently at different pressures. For example, water boils at a lower temperature at lower pressures ...
A variable in an experiment which is held constant in order to assess the relationship between multiple variables [a], is a control variable. [2] [3] A control variable is an element that is not changed throughout an experiment because its unchanging state allows better understanding of the relationship between the other variables being tested.
The pressure exerted by a column of liquid of height h and density ρ is given by the hydrostatic pressure equation p = ρgh, where g is the gravitational acceleration. Fluid density and local gravity can vary from one reading to another depending on local factors, so the height of a fluid column does not define pressure precisely.
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
In physics, a perfect fluid or ideal fluid [a] is a fluid that can be completely characterized by its rest frame mass density and isotropic pressure . Real fluids are "sticky" and contain (and conduct) heat. Perfect fluids are idealized models in which these possibilities are ignored.
This pressure distribution is simply the pressure at all points around an airfoil. Typically, graphs of these distributions are drawn so that negative numbers are higher on the graph, as the C p {\displaystyle C_{p}} for the upper surface of the airfoil will usually be farther below zero and will hence be the top line on the graph.
The pressure and temperature of the gas are directly proportional: As temperature increases, the pressure of the propane gas increases by the same factor. A simple consequence of this proportionality is that on a hot summer day, the propane tank pressure will be elevated, and thus propane tanks must be rated to withstand such increases in pressure.
Another example of point-of-care work involving a capillary pressure-related design component is the separation of plasma from whole blood by filtration through porous membrane. Efficient and high-volume separation of plasma from whole blood is often necessary for infectious disease diagnostics, like the HIV viral load test.