Search results
Results From The WOW.Com Content Network
The number of elements of the empty set (i.e., its cardinality) is zero. The empty set is the only set with either of these properties. For any set A: The empty set is a subset of A; The union of A with the empty set is A; The intersection of A with the empty set is the empty set; The Cartesian product of A and the empty set is the empty set ...
So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist. However, when restricted to the context of subsets of a given fixed set X {\displaystyle X} , the notion of the intersection of an empty collection of ...
The intersection A ∩ B is the set of all things that are members of both A and B. Likewise, the intersection is formally defined by the corresponding logical conjunction (). Further, if there are no common elements between A and B, i.e. if the intersection of A and B is the empty set (A ∩ B = ∅), then A and B are said to be disjoint.
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
The simple theorems in the algebra of sets are some of the elementary properties of the algebra of union (infix operator: ∪), intersection (infix operator: ∩), and set complement (postfix ') of sets. These properties assume the existence of at least two sets: a given universal set, denoted U, and the empty set, denoted {}.
Additionally, while a collection of less than two sets is trivially disjoint, as there are no pairs to compare, the intersection of a collection of one set is equal to that set, which may be non-empty. [2] For instance, the three sets { {1, 2}, {2, 3}, {1, 3} } have an empty intersection but are not disjoint. In fact, there are no two disjoint ...
The empty set cannot belong to any collection with the finite intersection property. A sufficient condition for the FIP intersection property is a nonempty kernel. The converse is generally false, but holds for finite families; that is, if A {\displaystyle {\mathcal {A}}} is finite, then A {\displaystyle {\mathcal {A}}} has the finite ...