Search results
Results From The WOW.Com Content Network
In probability theory, there exist several different notions of convergence of sequences of random variables, including convergence in probability, convergence in distribution, and almost sure convergence. The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than ...
where the last step follows by the pigeonhole principle and the sub-additivity of the probability measure. Each of the probabilities on the right-hand side converge to zero as n → ∞ by definition of the convergence of {X n} and {Y n} in probability to X and Y respectively.
The order in probability notation is used in probability theory and statistical theory in direct parallel to the big O notation that is standard in mathematics.Where the big O notation deals with the convergence of sequences or sets of ordinary numbers, the order in probability notation deals with convergence of sets of random variables, where convergence is in the sense of convergence in ...
Uniform convergence in probability is a form of convergence in probability in statistical asymptotic theory and probability theory. It means that, under certain conditions, the empirical frequencies of all events in a certain event-family converge to their theoretical probabilities .
This theorem follows from the fact that if X n converges in distribution to X and Y n converges in probability to a constant c, then the joint vector (X n, Y n) converges in distribution to (X, c) . Next we apply the continuous mapping theorem , recognizing the functions g ( x , y ) = x + y , g ( x , y ) = xy , and g ( x , y ) = x y −1 are ...
In probability theory, Kolmogorov's Three-Series Theorem, named after Andrey Kolmogorov, gives a criterion for the almost sure convergence of an infinite series of random variables in terms of the convergence of three different series involving properties of their probability distributions.
In order to obtain convergence in L 1 (i.e., convergence in mean), one requires uniform integrability of the random variables . By Chebyshev's inequality, convergence in L 1 implies convergence in probability and convergence in distribution. The following are equivalent:
The uniform convergence of more general empirical measures becomes an important property of the Glivenko–Cantelli classes of functions or sets. [2] The Glivenko–Cantelli classes arise in Vapnik–Chervonenkis theory, with applications to machine learning. Applications can be found in econometrics making use of M-estimators.