Search results
Results From The WOW.Com Content Network
Oxidation of pyrite in clay formations in contact with concrete – this produces sulfuric acid which reacts with concrete. Bacterial activity in sewers – anaerobic sulfate reduction at work in the organic-rich sludges accumulated under water in the conduits produces hydrogen sulfide gas (H 2 S).
These soils contain iron sulfide minerals (predominantly as the mineral pyrite) and/or their oxidation products. In an undisturbed state below the water table, acid sulfate soils are benign. However, if the soils are drained, excavated or otherwise exposed to air, the sulfides react with oxygen to form sulfuric acid. [1]
Example of flat piece of concrete having dislodged with corroded rebar underneath, Welland River bridge across Queen Elizabeth Way in Niagara Falls, Ontario. The expansion of the corrosion products (iron oxides) of carbon steel reinforcement structures may induce internal mechanical stress (tensile stress) that cause the formation of cracks and disrupt the concrete structure.
Biogenic sulfide corrosion is a bacterially mediated process of forming hydrogen sulfide gas and the subsequent conversion to sulfuric acid that attacks concrete and steel within wastewater environments. The hydrogen sulfide gas is biochemically oxidized in the presence of moisture to form sulfuric acid.
Samples of "ground granulated blast furnace slag" (left) and "granulated blast furnace slag" (right) Ground granulated blast-furnace slag (GGBS or GGBFS) is obtained by quenching molten iron slag (a by-product of iron and steel-making) from a blast furnace in water or steam, to produce a glassy, granular product that is then dried and ground into a fine powder.
Some of the hydrogen sulfide will react with metal ions in the water or solid to produce iron or metal sulfides, which are not water-soluble. These metal sulfides, such as iron(II) sulfide, are often black or brown, leading to the color of sludge. Pyrrhotite is a waste product of the Desulfovibrio bacteria, a sulfate reducing bacteria.
Iron pyrite was heaped up and allowed to weather (an example of an early form of heap leaching). The acidic runoff from the heap was then boiled with iron to produce iron sulfate. In the 15th century, new methods of such leaching began to replace the burning of sulfur as a source of sulfuric acid. By the 19th century, it had become the dominant ...
Iron sulfide or Iron sulphide can refer to range of chemical compounds composed of iron and sulfur. Minerals. By increasing order of stability: Iron(II) sulfide, FeS;