Ad
related to: divide polynomials by monomials calculator free
Search results
Results From The WOW.Com Content Network
If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1. Q ( x ) is simply the quotient obtained from the division process; since r is known to be a root of P ( x ), it is known that the remainder must be zero.
This implies that, the monic polynomials in a univariate polynomial ring over a commutative ring form a monoid under polynomial multiplication. Two monic polynomials are associated if and only if they are equal, since the multiplication of a polynomial by a nonzero constant produces a polynomial with this constant as its leading coefficient.
When a monomial order has been chosen, the leading monomial is the largest u in S, the leading coefficient is the corresponding c u, and the leading term is the corresponding c u u. Head monomial/coefficient/term is sometimes used as a synonym of "leading". Some authors use "monomial" instead of "term" and "power product" instead of "monomial".
In mathematics the monomial basis of a polynomial ring is its basis (as a vector space or free module over the field or ring of coefficients) that consists of all monomials.The monomials form a basis because every polynomial may be uniquely written as a finite linear combination of monomials (this is an immediate consequence of the definition of a polynomial).
Once a monomial ordering is fixed, the terms of a polynomial (product of a monomial with its nonzero coefficient) are naturally ordered by decreasing monomials (for this order). This makes the representation of a polynomial as a sorted list of pairs coefficient–exponent vector a canonical representation of the polynomials (that is, two ...
In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule ), but the method can be generalized to division by any polynomial .
Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term.Two definitions of a monomial may be encountered: A monomial, also called a power product or primitive monomial, [1] is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. [2]