Ad
related to: active transport gcse biology aqa
Search results
Results From The WOW.Com Content Network
There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient. This process is in contrast to passive transport , which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area ...
Secondary active transport is when one solute moves down the electrochemical gradient to produce enough energy to force the transport of another solute from low concentration to high concentration. [ citation needed ] An example of where this occurs is in the movement of glucose within the proximal convoluted tubule (PCT).
Active transport is the movement of a substance across a membrane against its concentration gradient. This is usually to accumulate high concentrations of molecules that a cell needs, such as glucose or amino acids. If the process uses chemical energy, such as adenosine triphosphate (ATP), it is called primary active transport.
Diffusion vs. Transport. In biology, an ion transporter is a transmembrane protein that moves ions (or other small molecules) across a biological membrane to accomplish many different biological functions, including cellular communication, maintaining homeostasis, energy production, etc. [1] There are different types of transporters including pumps, uniporters, antiporters, and symporters.
Method of glucose uptake differs throughout tissues depending on two factors; the metabolic needs of the tissue and availability of glucose.The two ways in which glucose uptake can take place are facilitated diffusion (a passive process) and secondary active transport (an active process which on the ion-gradient which is established through the hydrolysis of ATP, known as primary active ...
P-gp is a 170 kDa transmembrane glycoprotein, which includes 10–15 kDa of N-terminal glycosylation.The N-terminal half of the protein contains six transmembrane helixes, followed by a large cytoplasmic domain with an ATP-binding site, and then a second section with six transmembrane helixes and an ATP-binding domain that shows over 65% of amino acid similarity with the first half of the ...
Active transport occurs apoplastically and does not use plasmodesmata. An intermediate type of loading exists that uses symplastic transport but utilizes a size-exclusion mechanism to ensure diffusion is a one-way process between the mesophyll and phloem cells.
Exocytosis (/ ˌ ɛ k s oʊ s aɪ ˈ t oʊ s ɪ s / [1] [2]) is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell (exo-+ cytosis). As an active transport mechanism, exocytosis requires the use of energy to transport material.