When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Zero to the power of zero - Wikipedia

    en.wikipedia.org/wiki/Zero_to_the_power_of_zero

    Zero to the power of zero, denoted as 0 0, is a mathematical expression that can take different values depending on the context. In certain areas of mathematics, such as combinatorics and algebra, 0 0 is conventionally defined as 1 because this assignment simplifies many formulas and ensures consistency in operations involving exponents.

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    The limit of e 1/n is e 0 = 1 when n tends to the infinity. Since any irrational number can be expressed as the limit of a sequence of rational numbers, exponentiation of a positive real number b with an arbitrary real exponent x can be defined by continuity with the rule [30]

  4. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable ⁠ ⁠ is denoted ⁠ ⁡ ⁠ or ⁠ ⁠, with the two notations used interchangeab

  5. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity asserts that is equal to −1. The expression e i π {\displaystyle e^{i\pi }} is a special case of the expression e z {\displaystyle e^{z}} , where z is any complex number . In general, e z {\displaystyle e^{z}} is defined for complex z by extending one of the definitions of the exponential function from real exponents to ...

  6. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent. The exponential function occurs naturally in many branches of mathematics. Walter Rudin called it "the most important function in mathematics". [1] It is therefore useful to have multiple ways to define (or characterize) it.

  7. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  8. Indeterminate form - Wikipedia

    en.wikipedia.org/wiki/Indeterminate_form

    Whether this expression is left undefined, or is defined to equal , depends on the field of application and may vary between authors. For more, see the article Zero to the power of zero . Note that 0 ∞ {\displaystyle 0^{\infty }} and other expressions involving infinity are not indeterminate forms .

  9. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a [4] (with the area being negative when 0 < a < 1). The simplicity of this definition, which is matched in many ...