Search results
Results From The WOW.Com Content Network
If N = F n > 3, then the above Jacobi symbol is always equal to −1 for a = 3, and this special case of Proth's theorem is known as Pépin's test. Although Pépin's test and Proth's theorem have been implemented on computers to prove the compositeness of some Fermat numbers, neither test gives a specific nontrivial factor.
For example, if a lens's focal length were 100 mm and its entrance pupil's diameter were 50 mm, the f-number would be 2. This would be expressed as " f /2 " in a lens system. The aperture diameter would be equal to f/2. Camera lenses often include an adjustable diaphragm, which changes the size of the aperture stop and thus the entrance pupil ...
By the lemma above, since s is odd and its cube is equal to a number of the form 3w 2 + v 2, it too can be expressed in terms of smaller coprime numbers, e and f. s = e 2 + 3f 2. A short calculation shows that v = e(e 2 − 9f 2) w = 3f(e 2 − f 2) Thus, e is odd and f is even, because v is odd. The expression for 18w then becomes
F 2. gravitational force by object on earth (upward) F 3. force by support on object (upward) F 4. force by object on support (downward) Forces F 1 and F 2 are equal, due to Newton's third law; the same is true for forces F 3 and F 4. Forces F 1 and F 3 are equal if and only if the object is in equilibrium, and no other forces are applied ...
F = N A / 1/e = 9.648 533 212 331 001 84 × 10 4 C⋅mol −1. One common use of the Faraday constant is in electrolysis calculations. One can divide the amount of charge (the current integrated over time) by the Faraday constant in order to find the chemical amount of a substance (in moles) that has been electrolyzed.
The equals sign, used to represent equality symbolically in an equation. In mathematics, equality is a relationship between two quantities or expressions, stating that they have the same value, or represent the same mathematical object. [1] [2] Equality between A and B is written A = B, and pronounced "A equals B".
Note: If f takes its values in a ring (in particular for real or complex-valued f ), there is a risk of confusion, as f n could also stand for the n-fold product of f, e.g. f 2 (x) = f(x) · f(x). [11] For trigonometric functions, usually the latter is meant, at least for positive exponents. [11]
The square root of 3 is the positive real number that, when multiplied by itself, gives the number 3. It is denoted mathematically as 3 {\textstyle {\sqrt {3}}} or 3 1 / 2 {\displaystyle 3^{1/2}} . It is more precisely called the principal square root of 3 to distinguish it from the negative number with the same property.