Search results
Results From The WOW.Com Content Network
The computed interpolation process is then used to insert many new values in between these key points to give a "smoother" result. In its simplest form, this is the drawing of two-dimensional curves. The key points, placed by the artist, are used by the computer algorithm to form a smooth curve either through, or near these points.
The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.
Polynomial interpolation also forms the basis for algorithms in numerical quadrature (Simpson's rule) and numerical ordinary differential equations (multigrid methods). In computer graphics, polynomials can be used to approximate complicated plane curves given a few specified points, for example the shapes of letters in typography.
Muller's method — based on quadratic interpolation at last three iterates; Sidi's generalized secant method — higher-order variants of secant method; Inverse quadratic interpolation — similar to Muller's method, but interpolates the inverse; Brent's method — combines bisection method, secant method and inverse quadratic interpolation
A description of linear interpolation can be found in the ancient Chinese mathematical text called The Nine Chapters on the Mathematical Art (九章算術), [1] dated from 200 BC to AD 100 and the Almagest (2nd century AD) by Ptolemy. The basic operation of linear interpolation between two values is commonly used in computer graphics.
Examples of algorithms for this task include New Edge-Directed Interpolation (NEDI), [1] [2] Edge-Guided Image Interpolation (EGGI), [3] Iterative Curvature-Based Interpolation (ICBI), [citation needed] and Directional Cubic Convolution Interpolation (DCCI). [4] A study found that DCCI had the best scores in PSNR and SSIM on a series of test ...
In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation. It is usually applied to functions sampled on a 2D rectilinear grid , though it can be generalized to functions defined on the vertices of (a mesh of) arbitrary convex quadrilaterals .
Fitting of a noisy curve by an asymmetrical peak model, with an iterative process (Gauss–Newton algorithm with variable damping factor α).Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints.