Search results
Results From The WOW.Com Content Network
Half-life (symbol t ½) is the time required for a quantity (of substance) to reduce to half of its initial value.The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive.
An effective half-life of the drug will involve a decay constant that represents the sum of the biological and physical decay constants, as in the formula: = + With the decay constant it is possible to calculate the effective half-life using the formula:
The biological half-lives "alpha half-life" and "beta half-life" of a substance measure how quickly a substance is distributed and eliminated. Physical optics: The intensity of electromagnetic radiation such as light or X-rays or gamma rays in an absorbent medium, follows an exponential decrease with distance into the absorbing medium.
Absorption half-life 1 h, elimination half-life 12 h. Biological half-life (elimination half-life, pharmacological half-life) is the time taken for concentration of a biological substance (such as a medication) to decrease from its maximum concentration (C max) to half of C max in the blood plasma.
Half-life T 1/2 is defined as ... to calculate the half-life of a radionuclide. Where decay constant λ is related to specific radioactivity a by the following equation:
The half-life, t 1/2, is the time taken for the activity of a given amount of a radioactive substance to decay to half of its initial value. The decay constant , λ " lambda ", the reciprocal of the mean lifetime (in s −1 ), sometimes referred to as simply decay rate .
For example, the isotope copper-64, commonly used in medical research, has a half-life of 12.7 hours. If you inject a large group of animals at "time zero", but measure the radioactivity in their organs at two later times, the later groups must be "decay corrected" to adjust for the decay that has occurred between the two time points.
As an extreme example, the half-life of the isotope bismuth-209 is 2.01 × 10 19 years. The isotopes in beta-decay stable isobars that are also stable with regards to double beta decay with mass number A = 5, A = 8, 143 ≤ A ≤ 155, 160 ≤ A ≤ 162, and A ≥ 165 are theorized to undergo alpha decay.