When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. NP-hardness - Wikipedia

    en.wikipedia.org/wiki/NP-hardness

    A simple example of an NP-hard problem is the subset sum problem. Informally, if H is NP-hard, then it is at least as difficult to solve as the problems in NP. However, the opposite direction is not true: some problems are undecidable, and therefore even more difficult to solve than all problems in NP, but they are probably not NP-hard (unless ...

  3. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    Euler diagram for P, NP, NP-complete, and NP-hard set of problems (excluding the empty language and its complement, which belong to P but are not NP-complete) Main article: P versus NP problem The question is whether or not, for all problems for which an algorithm can verify a given solution quickly (that is, in polynomial time ), an algorithm ...

  4. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    NP-hard in general Euclidean space (of d dimensions) even for two clusters, [15] [16] NP-hard for a general number of clusters k even in the plane, [17] if k and d (the dimension) are fixed, the problem can be exactly solved in time (+), where n is the number of entities to be clustered. [18]

  5. Computational complexity theory - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The notion of hard problems depends on the type of reduction being used. For complexity classes larger than P, polynomial-time reductions are commonly used. In particular, the set of problems that are hard for NP is the set of NP-hard problems.

  6. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    The problem has been shown to be NP-hard (more precisely, it is complete for the complexity class FP NP; see function problem), and the decision problem version ("given the costs and a number x, decide whether there is a round-trip route cheaper than x") is NP-complete. The bottleneck travelling salesman problem is also NP-hard.

  7. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    As both n and L grow large, SSP is NP-hard. The complexity of the best known algorithms is exponential in the smaller of the two parameters n and L. The problem is NP-hard even when all input integers are positive (and the target-sum T is a part of the input). This can be proved by a direct reduction from 3SAT. [2]

  8. NP (complexity) - Wikipedia

    en.wikipedia.org/wiki/NP_(complexity)

    Euler diagram for P, NP, NP-complete, and NP-hard set of problems. Under the assumption that P ≠ NP, the existence of problems within NP but outside both P and NP-complete was established by Ladner. [1] In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems.

  9. Maximum coverage problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_coverage_problem

    The maximum coverage problem is NP-hard, and cannot be approximated to within + under standard assumptions. This result essentially matches the approximation ratio achieved by the generic greedy algorithm used for maximization of submodular functions with a cardinality constraint .