Search results
Results From The WOW.Com Content Network
Solubility will also depend on the excess or deficiency of a common ion in the solution [clarification needed], a phenomenon known as the common-ion effect. To a lesser extent, solubility will depend on the ionic strength of solutions. The last two effects can be quantified using the equation for solubility equilibrium.
A solubility equilibrium exists when a chemical compound in the solid state is in chemical equilibrium with a solution containing the compound. This type of equilibrium is an example of dynamic equilibrium in that some individual molecules migrate between the solid and solution phases such that the rates of dissolution and precipitation are equal to one another.
In contrast, the concentration does change with , since the density of a solution and thus its volume are temperature-dependent. Defining the aqueous-phase composition via molality has the advantage that any temperature dependence of the Henry's law constant is a true solubility phenomenon and not introduced indirectly via a density change of ...
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
This temperature determines the relative solubility of surfactant in an aqueous solution. This is the minimum temperature the solution must be at to allow the surfactant to precipitate into aggregates. [8] Below this temperature no level of solubility will be sufficient to precipitate aggregates due to minimal movement of particles in solution. [8]
The temperature of the solution eventually decreases to match that of the surroundings. The equilibrium, between the gas as a separate phase and the gas in solution, will by Le Châtelier's principle shift to favour the gas going into solution as the temperature is decreased (decreasing the temperature increases the solubility of a gas).
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
Salting in refers to the effect where increasing the ionic strength of a solution increases the solubility of a solute, such as a protein. This effect tends to be observed at lower ionic strengths. [citation needed] Protein solubility is a complex function of physicochemical nature of the protein, pH, temperature, and the concentration of the ...