When.com Web Search

  1. Ads

    related to: exterior angles in parallel lines kuta

Search results

  1. Results From The WOW.Com Content Network
  2. Exterior angle theorem - Wikipedia

    en.wikipedia.org/wiki/Exterior_angle_theorem

    The high school exterior angle theorem (HSEAT) says that the size of an exterior angle at a vertex of a triangle equals the sum of the sizes of the interior angles at the other two vertices of the triangle (remote interior angles). So, in the picture, the size of angle ACD equals the size of angle ABC plus the size of angle CAB.

  3. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    A transversal that cuts two parallel lines at right angles is called a perpendicular transversal. In this case, all 8 angles are right angles [1] When the lines are parallel, a case that is often considered, a transversal produces several congruent supplementary angles. Some of these angle pairs have specific names and are discussed below ...

  4. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    adjacent angles in a parallelogram are supplementary (add to 180°) and, the diagonals of a rectangle are equal and cross each other in their median point. Let there be a right angle ∠ ABC, r a line parallel to BC passing by A, and s a line parallel to AB passing by C. Let D be the point of intersection of lines r and s.

  5. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...

  6. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    The supplement of an interior angle is called an exterior angle; that is, an interior angle and an exterior angle form a linear pair of angles. There are two exterior angles at each vertex of the polygon, each determined by extending one of the two sides of the polygon that meet at the vertex; these two angles are vertical and hence are equal.

  7. Angle of parallelism - Wikipedia

    en.wikipedia.org/wiki/Angle_of_parallelism

    János Bolyai discovered a construction which gives the asymptotic parallel s to a line r passing through a point A not on r. [1] Drop a perpendicular from A onto B on r. Choose any point C on r different from B. Erect a perpendicular t to r at C. Drop a perpendicular from A onto D on t. Then length DA is longer than CB, but shorter than CA.

  8. Absolute geometry - Wikipedia

    en.wikipedia.org/wiki/Absolute_geometry

    In Euclid's Elements, the first 28 Propositions and Proposition 31 avoid using the parallel postulate, and therefore are valid in absolute geometry.One can also prove in absolute geometry the exterior angle theorem (an exterior angle of a triangle is larger than either of the remote angles), as well as the Saccheri–Legendre theorem, which states that the sum of the measures of the angles in ...

  9. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    the distance between the two lines can be found by locating two points (one on each line) that lie on a common perpendicular to the parallel lines and calculating the distance between them. Since the lines have slope m , a common perpendicular would have slope −1/ m and we can take the line with equation y = − x / m as a common perpendicular.