When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian beam - Wikipedia

    en.wikipedia.org/wiki/Gaussian_beam

    The Gaussian function has a 1/e 2 diameter (2w as used in the text) about 1.7 times the FWHM.. At a position z along the beam (measured from the focus), the spot size parameter w is given by a hyperbolic relation: [1] = + (), where [1] = is called the Rayleigh range as further discussed below, and is the refractive index of the medium.

  3. Ray transfer matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Ray_transfer_matrix_analysis

    Multiple prism beam expander using r prisms M is the total beam magnification given by M = k 1 k 2 k 3 ···k r, where k is defined in the previous entry and B is the total optical propagation distance [clarification needed] of the multiple prism expander. [5]

  4. Numerical aperture - Wikipedia

    en.wikipedia.org/wiki/Numerical_aperture

    The NA of a Gaussian laser beam is then related to its minimum spot size ("beam waist") by NA ≃ λ 0 π w 0 , {\displaystyle {\text{NA}}\simeq {\frac {\lambda _{0}}{\pi w_{0}}},} where λ 0 is the vacuum wavelength of the light, and 2 w 0 is the diameter of the beam at its narrowest spot, measured between the e −2 irradiance points ("Full ...

  5. Convolution for optical broad-beam responses in scattering ...

    en.wikipedia.org/wiki/Convolution_for_optical...

    For a Gaussian beam, no simple upper integration limits exist because it theoretically extends to infinity. At r >> R, a Gaussian beam and a top-hat beam of the same R and S 0 have comparable convolution results. Therefore, r ≤ r max − R can be used approximately for Gaussian beams as well.

  6. Gaussian optics - Wikipedia

    en.wikipedia.org/wiki/Gaussian_optics

    Gaussian optics is a technique in geometrical optics that describes the behaviour of light rays in optical systems by using the paraxial approximation, in which only rays which make small angles with the optical axis of the system are considered. [1] In this approximation, trigonometric functions can be expressed as linear functions of the angles.

  7. Complex beam parameter - Wikipedia

    en.wikipedia.org/wiki/Complex_beam_parameter

    In optics, the complex beam parameter is a complex number that specifies the properties of a Gaussian beam at a particular point z along the axis of the beam. It is usually denoted by q . It can be calculated from the beam's vacuum wavelength λ 0 , the radius of curvature R of the phase front , the index of refraction n ( n =1 for air), and ...

  8. Etendue - Wikipedia

    en.wikipedia.org/wiki/Etendue

    It corresponds to the beam parameter product (BPP) in Gaussian beam optics. Other names for etendue include acceptance, throughput, light grasp, light-gathering power, optical extent, [1] and the AΩ product. Throughput and AΩ product are especially used in radiometry and radiative transfer where it is related to the view factor (or shape factor).

  9. Orbital angular momentum of light - Wikipedia

    en.wikipedia.org/wiki/Orbital_angular_momentum...

    If the phase profile on SLM is flat, the SLM works effectively as a mirror. If the phase has a helical profile, the resulting beam is a Laguerre-Gaussian (LG) beam with a well-defined OAM. In real applications, there is a non-negligible admixture in the reflected beam in the form of a Gaussian beam.