Search results
Results From The WOW.Com Content Network
The isoelectric point (pI, pH(I), IEP), is the pH at which a molecule carries no net electrical charge or is electrically neutral in the statistical mean. The standard nomenclature to represent the isoelectric point is pH(I). [1] However, pI is also used. [2] For brevity, this article uses pI.
The pzc is the same as the isoelectric point (iep) if there is no adsorption of other ions than the potential determining H + /OH − at the surface [clarification needed]. [8] This is often the case for pure ("pristine surface") oxides in suspension in water. In the presence of specific adsorption, pzc and isoelectric point generally have ...
The two dimensions that proteins are separated into using this technique can be isoelectric point, protein complex mass in the native state, or protein mass. [citation needed] The separation by isoelectric point is called isoelectric focusing. Thereby, a pH gradient is applied to a gel and an electric potential is applied across the gel, making ...
The isoelectric point (pI) is the pH of a solution at which the net primary charge of a protein becomes zero. At a solution pH that is above the pI the surface of the protein is predominantly negatively charged and therefore like-charged molecules will exhibit repulsive forces.
The isoelectric point is the pH at which a compound - in this case a protein - has no net charge. A protein's isoelectric point or PI can be determined using the pKa of the side chains, if the amino (positive chain) is able to cancel out the carboxyl (negative) chain, the protein would be at its PI.
The isoelectric point of a given protein is determined by the relative number of positively (e.g. lysine, arginine) and negatively (e.g. glutamate, aspartate) charged amino acids, with negatively charged amino acids contributing to a low isoelectric point and positively charged amino acids contributing to a high isoelectric point.
Proteins with isoelectric point (pI) above physiological conditions have a positive charge and proteins with pI below physiological conditions have a negative charge. The net charge of the protein, determined by the sum charge of its constituents, results in electrophoretic migration in a physiologic electric field.
The pH at which the average charge is zero is known as the molecule's isoelectric point. Ampholytes are used to establish a stable pH gradient for use in isoelectric focusing. Metal oxides which react with both acids as well as bases to produce salts and water are known as amphoteric oxides.