Search results
Results From The WOW.Com Content Network
An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once
A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph . Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices ...
The term cycle may also refer to an element of the cycle space of a graph. There are many cycle spaces, one for each coefficient field or ring. The most common is the binary cycle space (usually called simply the cycle space), which consists of the edge sets that have even degree at every vertex; it forms a vector space over the two-element field.
In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton , [ 1 ] Hamiltonian mechanics replaces (generalized) velocities q ˙ i {\displaystyle {\dot {q}}^{i}} used in Lagrangian mechanics with (generalized) momenta .
If negative weights and negatively weighted cycles are allowed, then finding a minimum cycle basis (without restriction) is also NP-hard, as it can be used to find a Hamiltonian cycle: if a graph is Hamiltonian, and all edges are given weight −1, then a minimum weight cycle basis necessarily includes at least one Hamiltonian cycle.
Illustration for the proof of Ore's theorem. In a graph with the Hamiltonian path v 1...v n but no Hamiltonian cycle, at most one of the two edges v 1 v i and v i − 1 v n (shown as blue dashed curves) can exist. For, if they both exist, then adding them to the path and removing the (red) edge v i − 1 v i would produce a Hamiltonian cycle.
There is always a Hamiltonian cycle in the wheel graph and there are + cycles in W n (sequence A002061 in the OEIS). The 7 cycles of the wheel graph W 4 . For odd values of n , W n is a perfect graph with chromatic number 3: the vertices of the cycle can be given two colors, and the center vertex given a third color.
If so, the route is a Hamiltonian cycle. The Hamiltonian path problem and the Hamiltonian cycle problem belong to the class of NP-complete problems, as shown in Michael Garey and David S. Johnson's book Computers and Intractability: A Guide to the Theory of NP-Completeness and Richard Karp's list of 21 NP-complete problems. [2] [3]