Search results
Results From The WOW.Com Content Network
Risch called it a decision procedure, because it is a method for deciding whether a function has an elementary function as an indefinite integral, and if it does, for determining that indefinite integral. However, the algorithm does not always succeed in identifying whether or not the antiderivative of a given function in fact can be expressed ...
(Note that the value of the expression is independent of the value of n, which is why it does not appear in the integral.) ∫ x x ⋅ ⋅ x ⏟ m d x = ∑ n = 0 m ( − 1 ) n ( n + 1 ) n − 1 n !
The term absolute value has been used in this sense from at least 1806 in French [3] and 1857 in English. [4] The notation | x |, with a vertical bar on each side, was introduced by Karl Weierstrass in 1841. [5] Other names for absolute value include numerical value [1] and magnitude. [1]
If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.
Then | | + + + + + | | so | | + + + + + | | This shows that the sum of the four integrals (in the middle) is finite if and only if the integral of the absolute value is finite, and the function is Lebesgue integrable only if all the four integrals are finite. So having a finite integral of the absolute value is equivalent to the conditions for ...
In complex analysis, a branch of mathematics, the antiderivative, or primitive, of a complex-valued function g is a function whose complex derivative is g.More precisely, given an open set in the complex plane and a function :, the antiderivative of is a function : that satisfies =.
1.4.2 Example 2: Antiderivatives of tangent and ... This formula expresses the fact that the absolute value of the determinant of a matrix equals the volume of the ...
The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).