Search results
Results From The WOW.Com Content Network
Under ideal conditions the reaction produces 50% of both the alcohol and the carboxylic acid (it takes two aldehydes to produce one acid and one alcohol). [5] This can be economically viable if the products can be separated and both have a value; the commercial conversion of furfural into furfuryl alcohol and 2-furoic acid is an example of this ...
A 3–5% aqueous solution of KOH is applied to the flesh of a mushroom and the researcher notes whether or not the color of the flesh changes. Certain species of gilled mushrooms, boletes, polypores, and lichens [25] are identifiable based on this color-change reaction. [26]
This reaction is important in the history of organic chemistry because it helped prove the structure of ethers. The general reaction mechanism is as follows: [3] An example is the reaction of sodium ethoxide with chloroethane to form diethyl ether and sodium chloride: C 2 H 5 Cl + C 2 H 5 ONa → C 2 H 5 OC 2 H 5 + NaCl
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
For example, sodium acetate dissociates in water into sodium and acetate ions. Sodium ions react very little with the hydroxide ions whereas the acetate ions combine with hydronium ions to produce acetic acid. In this case the net result is a relative excess of hydroxide ions, yielding a basic solution. Strong acids also undergo hydrolysis.
The temperature of the solution eventually decreases to match that of the surroundings. The equilibrium, between the gas as a separate phase and the gas in solution, will by Le Châtelier's principle shift to favour the gas going into solution as the temperature is decreased (decreasing the temperature increases the solubility of a gas).
The reaction usually requires a catalyst, such as concentrated sulfuric acid: R−OH + R'−CO 2 H → R'−CO 2 R + H 2 O. Other types of ester are prepared in a similar manner−for example, tosyl (tosylate) esters are made by reaction of the alcohol with 4-toluenesulfonyl chloride in pyridine.
The Koch reaction is an organic reaction for the synthesis of tertiary carboxylic acids from alcohols or alkenes and carbon monoxide. Some commonly industrially produced Koch acids include pivalic acid , 2,2-dimethylbutyric acid and 2,2-dimethylpentanoic acid. [ 1 ]