Ad
related to: example of orthogonal function in science project worksheet
Search results
Results From The WOW.Com Content Network
Several sets of orthogonal functions have become standard bases for approximating functions. For example, the sine functions sin nx and sin mx are orthogonal on the interval x ∈ ( − π , π ) {\displaystyle x\in (-\pi ,\pi )} when m ≠ n {\displaystyle m\neq n} and n and m are positive integers.
The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").
Orthogonal TRSs have the consequent property that all reducible expressions (redexes) within a term are completely disjoint—that is, the redexes share no common function symbol. For example, the TRS with reduction rules : (,) (): ((),) is orthogonal—it is easy to observe that each reduction rule is left-linear, and the left hand side of ...
We say that functions and are orthogonal if their inner product (equivalently, the value of this integral) is zero: f , g w = 0. {\displaystyle \langle f,g\rangle _{w}=0.} Orthogonality of two functions with respect to one inner product does not imply orthogonality with respect to another inner product.
A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .
Example of orthogonal factorial design Orthogonality concerns the forms of comparison (contrasts) that can be legitimately and efficiently carried out. Contrasts can be represented by vectors and sets of orthogonal contrasts are uncorrelated and independently distributed if the data are normal.
The first two steps of the Gram–Schmidt process. In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.
Homogeneous coordinates are not uniquely determined by a point, so a function defined on the coordinates, say (,,), does not determine a function defined on points as with Cartesian coordinates. But a condition f ( x , y , z ) = 0 {\displaystyle f(x,y,z)=0} defined on the coordinates, as might be used to describe a curve, determines a condition ...