When.com Web Search

  1. Ad

    related to: curvature kappa formula 2 reviews does it work

Search results

  1. Results From The WOW.Com Content Network
  2. Kappa curve - Wikipedia

    en.wikipedia.org/wiki/Kappa_curve

    The kappa curve has two vertical asymptotes. In geometry, the kappa curve or Gutschoven's curve is a two-dimensional algebraic curve resembling the Greek letter ϰ (kappa).The kappa curve was first studied by Gérard van Gutschoven around 1662.

  3. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    The normal curvature, k n, is the curvature of the curve projected onto the plane containing the curve's tangent T and the surface normal u; the geodesic curvature, k g, is the curvature of the curve projected onto the surface's tangent plane; and the geodesic torsion (or relative torsion), τ r, measures the rate of change of the surface ...

  4. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    The first Frenet-Serret formula holds by the definition of the normal N and the curvature κ, and the third Frenet-Serret formula holds by the definition of the torsion τ. Thus what is needed is to show the second Frenet-Serret formula. Since T, N, B are orthogonal unit vectors with B = T × N, one also has T = N × B and N = B × T.

  5. Einstein tensor - Wikipedia

    en.wikipedia.org/wiki/Einstein_tensor

    The Einstein tensor is a tensor of order 2 defined over pseudo-Riemannian manifolds.In index-free notation it is defined as =, where is the Ricci tensor, is the metric tensor and is the scalar curvature, which is computed as the trace of the Ricci tensor by ⁠ = ⁠.

  6. Metric tensor (general relativity) - Wikipedia

    en.wikipedia.org/wiki/Metric_tensor_(general...

    The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past. In general relativity, the metric tensor plays the role of the gravitational potential in the classical theory of gravitation, although the physical ...

  7. Cesàro equation - Wikipedia

    en.wikipedia.org/wiki/Cesàro_equation

    In geometry, the Cesàro equation of a plane curve is an equation relating the curvature (κ) at a point of the curve to the arc length (s) from the start of the curve to the given point. It may also be given as an equation relating the radius of curvature (R) to arc length. (These are equivalent because R = ⁠ 1 / κ ⁠.)

  8. Friedmann–Lemaître–Robertson–Walker metric - Wikipedia

    en.wikipedia.org/wiki/Friedmann–Lemaître...

    k is a constant representing the curvature of the space. There are two common unit conventions: k may be taken to have units of length −2, in which case r has units of length and a(t) is unitless. k is then the Gaussian curvature of the space at the time when a(t) = 1.

  9. Gauss–Bonnet theorem - Wikipedia

    en.wikipedia.org/wiki/Gauss–Bonnet_theorem

    In the mathematical field of differential geometry, the Gauss–Bonnet theorem (or Gauss–Bonnet formula) is a fundamental formula which links the curvature of a surface to its underlying topology. In the simplest application, the case of a triangle on a plane , the sum of its angles is 180 degrees. [ 1 ]