Search results
Results From The WOW.Com Content Network
With regard to what actions the machine actually does, Turing (1936) [2] states the following: "This [example] table (and all succeeding tables of the same kind) is to be understood to mean that for a configuration described in the first two columns the operations in the third column are carried out successively, and the machine then goes over into the m-configuration in the final column."
An oracle machine or o-machine is a Turing a-machine that pauses its computation at state "o" while, to complete its calculation, it "awaits the decision" of "the oracle"—an entity unspecified by Turing "apart from saying that it cannot be a machine" (Turing (1939), The Undecidable, p. 166–168).
Smith's proof has unleashed a debate on the precise operational conditions a Turing machine must satisfy in order for it to be candidate universal machine. A universal (2,3) Turing machine has conceivable applications. [19] For instance, a machine that small and simple can be embedded or constructed using a small number of particles or molecules.
A linear bounded automaton is a Turing machine that satisfies the following three conditions: Its input alphabet includes two special symbols, serving as left and right endmarkers. Its transitions may not print other symbols over the endmarkers. Its transitions may neither move to the left of the left endmarker nor to the right of the right ...
In fact, Turing's machine does this—it prints on alternate squares, leaving blanks between figures so it can print locator symbols. Turing always left alternate squares blank so his machine could place a symbol to the left of a figure (or a letter if the machine is the universal machine and the scanned square is actually in the “program”).
Langton's ant is a two-dimensional Turing machine with a very simple set of rules but complex emergent behavior. It was invented by Chris Langton in 1986 and runs on a square lattice of black and white cells. [1] The idea has been generalized in several different ways, such as turmites which add more colors and more states.
These symbols represent the word on which the cyclic tag system is operating, and the first such symbol is destroyed upon consideration of every production rule. When this leading symbol is a 1, new symbols are added to the end of the string; when it is 0, no new symbols are added. The mechanism for achieving this is described below.
A related concept is that of Turing equivalence – two computers P and Q are called equivalent if P can simulate Q and Q can simulate P. [4] The Church–Turing thesis conjectures that any function whose values can be computed by an algorithm can be computed by a Turing machine, and therefore that if any real-world computer can simulate a ...