Search results
Results From The WOW.Com Content Network
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product = is a product distribution.
The product of two Gaussian functions is a Gaussian, and the convolution of two Gaussian functions is also a Gaussian, with variance being the sum of the original variances: = +. The product of two Gaussian probability density functions (PDFs), though, is not in general a Gaussian PDF.
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]
For example, convolution of digit sequences is the kernel operation in multiplication of multi-digit numbers, which can therefore be efficiently implemented with transform techniques (Knuth 1997, §4.3.3.C; von zur Gathen & Gerhard 2003, §8.2). Eq.1 requires N arithmetic operations per output value and N 2 operations for N outputs. That can be ...
In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density ...
For any n ≤ N and m ≤ M, define g(n,m) as the normalizing constant for a network with n customers, m service facilities (1,2, … m), and values of X 1, X 2, … X m that match the first m members of the original sequence X 1, X 2, … X M. Given this definition, the sum of the terms in the second group can now be written as g(N, M-1).
That is, for any two random variables X 1, X 2, both have the same probability distribution if and only if =. [citation needed] If a random variable X has moments up to k-th order, then the characteristic function φ X is k times continuously differentiable on the entire real line.