When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ralph Louis Cohen - Wikipedia

    en.wikipedia.org/wiki/Ralph_Louis_Cohen

    In 1991, Cohen, together with Frederick Cohen, Benjamin Mann, and R. James Milgram gave a complete description of the algebraic topology of the space of rational functions, and in the following years he made several contributions to the study of related moduli spaces.

  3. Algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Algebraic_topology

    Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological ...

  4. William Fulton (mathematician) - Wikipedia

    en.wikipedia.org/wiki/William_Fulton_(mathematician)

    He is, as of 2011, a professor at the University of Michigan. [2] As of 2024, Fulton had supervised the doctoral work of 24 students at Brown, Chicago, and Michigan. Fulton is known as the author or coauthor of a number of popular texts, including Algebraic Curves and Representation Theory.

  5. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent.

  6. Burt Totaro - Wikipedia

    en.wikipedia.org/wiki/Burt_Totaro

    Burt James Totaro, FRS (b. 1967), is an American mathematician, currently a professor at the University of California, Los Angeles, specializing in algebraic geometry and algebraic topology. Education and early life

  7. Lift (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Lift_(mathematics)

    A basic example in topology is lifting a path in one topological space to a path in a covering space. [1] For example, consider mapping opposite points on a sphere to the same point, a continuous map from the sphere covering the projective plane. A path in the projective plane is a continuous map from the unit interval [0,1]. We can lift such a ...

  8. Category:Algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Category:Algebraic_topology

    Algebraic topology is a branch of mathematics in which tools from abstract algebra are used to study topological spaces Subcategories. This category has the following ...

  9. Betti number - Wikipedia

    en.wikipedia.org/wiki/Betti_number

    In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes.For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicial complexes or CW complexes), the sequence of Betti numbers is 0 from some point onward (Betti numbers vanish above the dimension of a space), and they ...