Search results
Results From The WOW.Com Content Network
In 1991, Cohen, together with Frederick Cohen, Benjamin Mann, and R. James Milgram gave a complete description of the algebraic topology of the space of rational functions, and in the following years he made several contributions to the study of related moduli spaces.
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological ...
He is, as of 2011, a professor at the University of Michigan. [2] As of 2024, Fulton had supervised the doctoral work of 24 students at Brown, Chicago, and Michigan. Fulton is known as the author or coauthor of a number of popular texts, including Algebraic Curves and Representation Theory.
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent.
Burt James Totaro, FRS (b. 1967), is an American mathematician, currently a professor at the University of California, Los Angeles, specializing in algebraic geometry and algebraic topology. Education and early life
A basic example in topology is lifting a path in one topological space to a path in a covering space. [1] For example, consider mapping opposite points on a sphere to the same point, a continuous map from the sphere covering the projective plane. A path in the projective plane is a continuous map from the unit interval [0,1]. We can lift such a ...
Algebraic topology is a branch of mathematics in which tools from abstract algebra are used to study topological spaces Subcategories. This category has the following ...
In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes.For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicial complexes or CW complexes), the sequence of Betti numbers is 0 from some point onward (Betti numbers vanish above the dimension of a space), and they ...