Search results
Results From The WOW.Com Content Network
The use of hydrogen peroxide as an oxidant would be advantageous, making the reaction more environmentally friendly as the sole byproduct is water. [7] Benzeneseleninic acid derivatives as catalysts have been reported to give high selectivity with hydrogen peroxide as the oxidant. [ 25 ]
The reaction is highly stereospecific in the sense that the double bond stereochemistry is generally transferred to the relative configuration of the epoxide with essentially perfect fidelity, so that a trans-olefin leads to the stereoselective formation of the trans-2,3-substituted epoxide only, as illustrated by the example above, while a cis ...
In general, if more than one alkene can be formed during dehalogenation by an elimination reaction, the more stable alkene is the major product. There are two types of elimination reactions, E1 and E2. An E2 reaction is a One step mechanism in which carbon-hydrogen and carbon-halogen bonds break to form a double bond. C=C Pi bond.
The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H 2 O 2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H 2 O 2 is reduced.
Thermolysis converts 1 to (E,E) geometric isomer 2, but 3 to (E,Z) isomer 4.. The Woodward–Hoffmann rules (or the pericyclic selection rules) [1] are a set of rules devised by Robert Burns Woodward and Roald Hoffmann to rationalize or predict certain aspects of the stereochemistry and activation energy of pericyclic reactions, an important class of reactions in organic chemistry.
The Juliá–Colonna epoxidation is an asymmetric poly-leucine catalyzed nucleophilic epoxidation of electron deficient olefins in a triphasic system.The reaction was reported by Sebastian Juliá at the Chemical Institute of Sarriá in 1980, [1] with further elaboration by both Juliá and Stefano Colonna (Istituto di Chimica Industriale dell'Università, Milan, Italy).
Reactions where the stereochemistry of the hydroxyl group is inverted saw lower regioselectivity, and removal of the hydroxyl group gave the exclusive formation of the other regioisomer. It is likely that the close proximity of the hydroxyl group in the syn isomer acidifies the ring-fusion proton through hydrogen-bonding interactions, thus ...
In chemistry, primarily organic and computational chemistry, a stereoelectronic effect [1] is an effect on molecular geometry, reactivity, or physical properties due to spatial relationships in the molecules' electronic structure, in particular the interaction between atomic and/or molecular orbitals. [2]