Search results
Results From The WOW.Com Content Network
Lectins, or proteins that bind carbohydrates, can recognize specific oligosaccharides and provide useful information for cell recognition based on oligosaccharide binding. [citation needed] An important example of oligosaccharide cell recognition is the role of glycolipids in determining blood types.
The different types of lipid-linked oligosaccharide (LLO) precursor produced in different organisms.. N-linked glycosylation is the attachment of an oligosaccharide, a carbohydrate consisting of several sugar molecules, sometimes also referred to as glycan, to a nitrogen atom (the amide nitrogen of an asparagine (Asn) residue of a protein), in a process called N-glycosylation, studied in ...
Gangliosides are present and concentrated on cell surfaces, with the two hydrocarbon chains of the ceramide moiety embedded in the plasma membrane and the oligosaccharides located on the extracellular surface, where they present points of recognition for extracellular molecules or surfaces of neighboring cells.
Glycolipid. Glycolipids are lipids with a carbohydrate attached by a glycosidic (covalent) bond. [1] Their role is to maintain the stability of the cell membrane and to facilitate cellular recognition, which is crucial to the immune response and in the connections that allow cells to connect to one another to form tissues. [2]
Cell attachment-recognition site Various proteins involved in cell–cell (e.g., sperm–oocyte), virus–cell, bacterium–cell, and hormone–cell interactions Antifreeze protein: Certain plasma proteins of coldwater fish Interact with specific carbohydrates Lectins, selectins (cell adhesion lectins), antibodies Receptor
Glycosylation also plays a role in cell-to-cell adhesion (a mechanism employed by cells of the immune system) via sugar-binding proteins called lectins, which recognize specific carbohydrate moieties. [2] Glycosylation is an important parameter in the optimization of many glycoprotein-based drugs such as monoclonal antibodies. [6]
O-glycans, which are the sugars added to the serine or threonine, have numerous functions throughout the body, including trafficking of cells in the immune system, allowing recognition of foreign material, controlling cell metabolism and providing cartilage and tendon flexibility. [2]
One example of the powerful biological attributes of lectins is the biochemical warfare agent ricin. The protein ricin is isolated from seeds of the castor oil plant and comprises two protein domains. Abrin from the jequirity pea is similar: One domain is a lectin that binds cell surface galactosyl residues and enables the protein to enter cells.