Search results
Results From The WOW.Com Content Network
Merge sort is often the best choice for sorting a linked list: in this situation it is relatively easy to implement a merge sort in such a way that it requires only Θ(1) extra space, and the slow random-access performance of a linked list makes some other algorithms (such as quicksort) perform poorly, and others (such as heapsort) completely ...
Insertion sort is widely used for small data sets, while for large data sets an asymptotically efficient sort is used, primarily heapsort, merge sort, or quicksort. Efficient implementations generally use a hybrid algorithm , combining an asymptotically efficient algorithm for the overall sort with insertion sort for small lists at the bottom ...
Repeatedly merge sublists to create a new sorted sublist until the single list contains all elements. The single list is the sorted list. The merge algorithm is used repeatedly in the merge sort algorithm. An example merge sort is given in the illustration. It starts with an unsorted array of 7 integers. The array is divided into 7 partitions ...
k-way merge algorithms usually take place in the second stage of external sorting algorithms, much like they do for merge sort. A multiway merge allows for the files outside of memory to be merged in fewer passes than in a binary merge. If there are 6 runs that need be merged then a binary merge would need to take 3 merge passes, as opposed to ...
Batcher's odd–even mergesort [1] is a generic construction devised by Ken Batcher for sorting networks of size O(n (log n) 2) and depth O((log n) 2), where n is the number of items to be sorted. Although it is not asymptotically optimal, Knuth concluded in 1998, with respect to the AKS network that "Batcher's method is much better, unless n ...
Block sort, or block merge sort, is a sorting algorithm combining at least two merge operations with an insertion sort to arrive at O(n log n) (see Big O notation) in-place stable sorting time. It gets its name from the observation that merging two sorted lists, A and B , is equivalent to breaking A into evenly sized blocks , inserting each A ...
The divide-and-conquer technique is the basis of efficient algorithms for many problems, such as sorting (e.g., quicksort, merge sort), multiplying large numbers (e.g., the Karatsuba algorithm), finding the closest pair of points, syntactic analysis (e.g., top-down parsers), and computing the discrete Fourier transform . [1]
Merge-insertion sort also performs fewer comparisons than the sorting numbers, which count the comparisons made by binary insertion sort or merge sort in the worst case. The sorting numbers fluctuate between n log 2 n − 0.915 n {\displaystyle n\log _{2}n-0.915n} and n log 2 n − n {\displaystyle n\log _{2}n-n} , with the same leading ...