Search results
Results From The WOW.Com Content Network
In dimension three, all rigid motions are also screw motions (this is Chasles' theorem) In dimension at most three, any improper rigid transformation can be decomposed into an improper rotation followed by a translation, or into a sequence of reflections. Any object will keep the same shape and size after a proper rigid transformation.
In kinematics, Chasles' theorem, or Mozzi–Chasles' theorem, says that the most general rigid body displacement can be produced by a screw displacement. A direct Euclidean isometry in three dimensions involves a translation and a rotation. The screw displacement representation of the isometry decomposes the translation into two components, one ...
In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is ...
Consider a rigid body, with three orthogonal unit vectors fixed to its body (representing the three axes of the object's local coordinate system). The basic problem is to specify the orientation of these three unit vectors, and hence the rigid body, with respect to the observer's coordinate system, regarded as a reference placement in space.
A single rigid body has at most six degrees of freedom (6 DOF) 3T3R consisting of three translations 3T and three rotations 3R. See also Euler angles. For example, the motion of a ship at sea has the six degrees of freedom of a rigid body, and is described as: [2] Translation and rotation: Walking (or surging): Moving forward and backward;
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...
The even isometries — identity, rotation, and translation — never do; they correspond to rigid motions, and form a normal subgroup of the full Euclidean group of isometries. Neither the full group nor the even subgroup are abelian ; for example, reversing the order of composition of two parallel mirrors reverses the direction of the ...
Screw theory is the algebraic calculation of pairs of vectors, also known as dual vectors [1] – such as angular and linear velocity, or forces and moments – that arise in the kinematics and dynamics of rigid bodies.