When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    The dot product of a dyadic with a vector gives another vector, and taking the dot product of this result gives a scalar derived from the dyadic. The effect that a given dyadic has on other vectors can provide indirect physical or geometric interpretations. Dyadic notation was first established by Josiah Willard Gibbs in 1884. The notation and ...

  3. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    A vector's components change scale inversely to changes in scale to the reference axes, and consequently a vector is called a contravariant tensor. A vector, which is an example of a contravariant tensor, has components that transform inversely to the transformation of the reference axes, (with example transformations including rotation and ...

  4. Match moving - Wikipedia

    en.wikipedia.org/wiki/Match_moving

    C ij = {(camera i,camera j):P'(camera i, XY i) ∩ P'(camera j, XY j) ≠ {}) So there is a set of camera vector pairs C ij for which the intersection of the inverse projections of two points XY i and XY j is a non-empty, hopefully small, set centering on a theoretical stationary point xyz.

  5. Cartesian product - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product

    In terms of set-builder notation, that is = {(,) }. [2] [3] A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product rows × columns is taken, the cells of the table contain ordered pairs of the form (row value, column value) .

  6. Bilinear form - Wikipedia

    en.wikipedia.org/wiki/Bilinear_form

    For a finite-dimensional vector space V, if either of B 1 or B 2 is an isomorphism, then both are, and the bilinear form B is said to be nondegenerate. More concretely, for a finite-dimensional vector space, non-degenerate means that every non-zero element pairs non-trivially with some other element:

  7. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    Since ε 2 = 0 for dual numbers, exp(aε) = 1 + aε, all other terms of the exponential series vanishing. Let F = {1 + εr : r ∈ H}, ε 2 = 0. Note that F is stable under the rotation q → p −1 qp and under the translation (1 + εr)(1 + εs) = 1 + ε(r + s) for any vector quaternions r and s. F is a 3-flat in the eight-dimensional space of ...

  8. Linear combination - Wikipedia

    en.wikipedia.org/wiki/Linear_combination

    is the linear combination of vectors and such that = +. In mathematics, a linear combination or superposition is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants).

  9. Two-vector - Wikipedia

    en.wikipedia.org/wiki/Two-vector

    A two-vector or bivector [1] is a tensor of type () and it is the dual of a two-form, meaning that it is a linear functional which maps two-forms to the real numbers (or more generally, to scalars). The tensor product of a pair of vectors is a two-vector. Then, any two-form can be expressed as a linear combination of tensor products of pairs of ...