Search results
Results From The WOW.Com Content Network
The dot product of a dyadic with a vector gives another vector, and taking the dot product of this result gives a scalar derived from the dyadic. The effect that a given dyadic has on other vectors can provide indirect physical or geometric interpretations. Dyadic notation was first established by Josiah Willard Gibbs in 1884. The notation and ...
A vector's components change scale inversely to changes in scale to the reference axes, and consequently a vector is called a contravariant tensor. A vector, which is an example of a contravariant tensor, has components that transform inversely to the transformation of the reference axes, (with example transformations including rotation and ...
C ij = {(camera i,camera j):P'(camera i, XY i) ∩ P'(camera j, XY j) ≠ {}) So there is a set of camera vector pairs C ij for which the intersection of the inverse projections of two points XY i and XY j is a non-empty, hopefully small, set centering on a theoretical stationary point xyz.
In terms of set-builder notation, that is = {(,) }. [2] [3] A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product rows × columns is taken, the cells of the table contain ordered pairs of the form (row value, column value) .
For a finite-dimensional vector space V, if either of B 1 or B 2 is an isomorphism, then both are, and the bilinear form B is said to be nondegenerate. More concretely, for a finite-dimensional vector space, non-degenerate means that every non-zero element pairs non-trivially with some other element:
Since ε 2 = 0 for dual numbers, exp(aε) = 1 + aε, all other terms of the exponential series vanishing. Let F = {1 + εr : r ∈ H}, ε 2 = 0. Note that F is stable under the rotation q → p −1 qp and under the translation (1 + εr)(1 + εs) = 1 + ε(r + s) for any vector quaternions r and s. F is a 3-flat in the eight-dimensional space of ...
is the linear combination of vectors and such that = +. In mathematics, a linear combination or superposition is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants).
A two-vector or bivector [1] is a tensor of type () and it is the dual of a two-form, meaning that it is a linear functional which maps two-forms to the real numbers (or more generally, to scalars). The tensor product of a pair of vectors is a two-vector. Then, any two-form can be expressed as a linear combination of tensor products of pairs of ...