Search results
Results From The WOW.Com Content Network
Erg Chebbi, Morocco. The effective stress can be defined as the stress, depending on the applied tension and pore pressure , which controls the strain or strength behaviour of soil and rock (or a generic porous body) for whatever pore pressure value or, in other terms, the stress which applied over a dry porous body (i.e. at =) provides the same strain or strength behaviour which is observed ...
Terzaghi's principle applies well to porous materials whose solid constituents are incompressible - soil, for example, is composed of grains of incompressible silica so that the volume change in soil during consolidation is due solely to the rearrangement of these constituents with respect to one another.
Lateral earth stress theory is used to estimate the amount of stress soil can exert perpendicular to gravity. This is the stress exerted on retaining walls. A lateral earth stress coefficient, K, is defined as the ratio of lateral (horizontal) effective stress to vertical effective stress for cohesionless soils (K=σ' h /σ' v). There are three ...
Stress components on a 2D rotating element. Click to see animation. Example of how stress components vary on the faces (edges) of a rectangular element as the angle of its orientation is varied. Principal stresses occur when the shear stresses simultaneously disappear from all faces
An example of lateral earth pressure overturning a retaining wall. The lateral earth pressure is the pressure that soil exerts in the horizontal direction. It is important because it affects the consolidation behavior and strength of the soil and because it is considered in the design of geotechnical engineering structures such as retaining walls, basements, tunnels, deep foundations and ...
The first equation determines the magnitude of the deviatoric stress needed to keep the soil flowing continuously as the product of a frictional constant (capital ) and the mean effective stress ′. The second equation states that the specific volume ν {\displaystyle \ \nu } occupied by unit volume of flowing particles will decrease as the ...
Preconsolidation pressure is the maximum effective vertical overburden stress that a particular soil sample has sustained in the past. [1] This quantity is important in geotechnical engineering, particularly for finding the expected settlement of foundations and embankments.
Geotechnical engineering, also known as geotechnics, is the branch of civil engineering concerned with the engineering behavior of earth materials. It uses the principles of soil mechanics and rock mechanics to solve its engineering problems. It also relies on knowledge of geology, hydrology, geophysics, and other related sciences.