When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Density estimation - Wikipedia

    en.wikipedia.org/wiki/Density_Estimation

    Demonstration of density estimation using Kernel density estimation: The true density is a mixture of two Gaussians centered around 0 and 3, shown with a solid blue curve. In each frame, 100 samples are generated from the distribution, shown in red. Centered on each sample, a Gaussian kernel is drawn in gray.

  3. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is [ 2 ] [ 3 ] f ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 . {\displaystyle f(x)={\frac {1}{\sqrt {2\pi \sigma ^{2 ...

  4. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    Though there is no closed form for (), there are a number of algorithms that estimate it numerically. [ 11 ] [ 12 ] Another way is to define the cdf F ( r ) {\displaystyle F(r)} as the probability that a sample lies inside the ellipsoid determined by its Mahalanobis distance r {\displaystyle r} from the Gaussian, a direct generalization of the ...

  5. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    In practical applications, Gaussian process models are often evaluated on a grid leading to multivariate normal distributions. Using these models for prediction or parameter estimation using maximum likelihood requires evaluating a multivariate Gaussian density, which involves calculating the determinant and the inverse of the covariance matrix.

  6. Kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Kernel_density_estimation

    Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.

  7. Mixture model - Wikipedia

    en.wikipedia.org/wiki/Mixture_model

    Some problems in mixture model estimation can be solved using spectral methods. In particular it becomes useful if data points x i are points in high-dimensional real space , and the hidden distributions are known to be log-concave (such as Gaussian distribution or Exponential distribution ).

  8. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  9. Multivariate kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_kernel...

    Multivariate Kernel Smoothing and Its Applications is a comprehensive book on many topics in kernel smoothing, including density estimation. Includes ks package code snippets in R. kde2d.m A Matlab function for bivariate kernel density estimation. libagf A C++ library for multivariate, variable bandwidth kernel density estimation.