When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    Two variables are perfectly collinear if there is an exact linear relationship between the two, so the correlation between them is equal to 1 or −1. That is, X 1 and X 2 are perfectly collinear if there exist parameters λ 0 {\displaystyle \lambda _{0}} and λ 1 {\displaystyle \lambda _{1}} such that, for all observations i , we have

  3. Collinearity equation - Wikipedia

    en.wikipedia.org/wiki/Collinearity_equation

    The collinearity equations are a set of two equations, used in photogrammetry and computer stereo vision, to relate coordinates in a sensor plane (in two dimensions) ...

  4. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  5. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  6. Coplanarity - Wikipedia

    en.wikipedia.org/wiki/Coplanarity

    In three-dimensional space, two linearly independent vectors with the same initial point determine a plane through that point. Their cross product is a normal vector to that plane, and any vector orthogonal to this cross product through the initial point will lie in the plane. [1]

  7. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  8. Today's Wordle Hint, Answer for #1332 on Monday, February 10 ...

    www.aol.com/todays-wordle-hint-answer-1332...

    Hints and the solution for today's Wordle on Monday, February 10.

  9. Welch bounds - Wikipedia

    en.wikipedia.org/wiki/Welch_bounds

    Several techniques have been introduced to obtain so-called Welch Bound Equality (WBE) sets of vectors for the = bound. The proof given above shows that two separate mathematical inequalities are incorporated into the Welch bound when =. The Cauchy–Schwarz inequality is met with equality when the two vectors involved are collinear.