When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cladistics - Wikipedia

    en.wikipedia.org/wiki/Cladistics

    Willi Hennig 1972 Peter Chalmers Mitchell in 1920 Robert John Tillyard. The original methods used in cladistic analysis and the school of taxonomy derived from the work of the German entomologist Willi Hennig, who referred to it as phylogenetic systematics (also the title of his 1966 book); but the terms "cladistics" and "clade" were popularized by other researchers.

  3. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory ...

  4. Mixed-data sampling - Wikipedia

    en.wikipedia.org/wiki/Mixed-data_sampling

    Mixed-data sampling (MIDAS) is an econometric regression developed by Eric Ghysels with several co-authors. There is now a substantial literature on MIDAS regressions and their applications, including Ghysels, Santa-Clara and Valkanov (2006), [ 1 ] Ghysels, Sinko and Valkanov, [ 2 ] Andreou, Ghysels and Kourtellos (2010) [ 3 ] and Andreou ...

  5. Calibration (statistics) - Wikipedia

    en.wikipedia.org/wiki/Calibration_(statistics)

    There are two main uses of the term calibration in statistics that denote special types of statistical inference problems. Calibration can mean a reverse process to regression, where instead of a future dependent variable being predicted from known explanatory variables, a known observation of the dependent variables is used to predict a corresponding explanatory variable; [1]

  6. Non-negative least squares - Wikipedia

    en.wikipedia.org/wiki/Non-negative_least_squares

    In mathematical optimization, the problem of non-negative least squares (NNLS) is a type of constrained least squares problem where the coefficients are not allowed to become negative. That is, given a matrix A and a (column) vector of response variables y , the goal is to find [ 1 ]

  7. Least-angle regression - Wikipedia

    en.wikipedia.org/wiki/Least-angle_regression

    This problem is discussed in detail by Weisberg in the discussion section of the Efron et al. (2004) Annals of Statistics article. [3] Weisberg provides an empirical example based upon re-analysis of data originally used to validate LARS that the variable selection appears to have problems with highly correlated variables.

  8. Statistical classification - Wikipedia

    en.wikipedia.org/wiki/Statistical_classification

    In statistics, where classification is often done with logistic regression or a similar procedure, the properties of observations are termed explanatory variables (or independent variables, regressors, etc.), and the categories to be predicted are known as outcomes, which are considered to be possible values of the dependent variable.

  9. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    The variant where variables are required to be 0 or 1, called zero-one linear programming, and several other variants are also NP-complete [2] [3]: MP1 Some problems related to Job-shop scheduling; Knapsack problem, quadratic knapsack problem, and several variants [2] [3]: MP9 Some problems related to Multiprocessor scheduling