Search results
Results From The WOW.Com Content Network
A sorting algorithm is stable if whenever there are two records R and S with the same key, and R appears before S in the original list, then R will always appear before S in the sorted list. When equal elements are indistinguishable, such as with integers, or more generally, any data where the entire element is the key, stability is not an issue.
Insertion sort applied to a list of n elements, assumed to be all different and initially in random order. On average, half the elements in a list A 1... A j are less than element A j+1, and half are greater. Therefore, the algorithm compares the (j + 1) th element to be inserted on the average with half the already sorted sub-list, so t j = j ...
Sorting a set of unlabelled weights by weight using only a balance scale requires a comparison sort algorithm. A comparison sort is a type of sorting algorithm that only reads the list elements through a single abstract comparison operation (often a "less than or equal to" operator or a three-way comparison) that determines which of two elements should occur first in the final sorted list.
However, insertion sort is one of the fastest algorithms for sorting very small arrays, even faster than quicksort; indeed, good quicksort implementations use insertion sort for arrays smaller than a certain threshold, also when arising as subproblems; the exact threshold must be determined experimentally and depends on the machine, but is ...
العربية; বাংলা; Čeština; Dansk; الدارجة; Deutsch; Eesti; Ελληνικά; Español; Esperanto; فارسی; Français; 한국어; Հայերեն
A bidirectional variant of selection sort (called double selection sort or sometimes cocktail sort due to its similarity to cocktail shaker sort) finds both the minimum and maximum values in the list in every pass. This requires three comparisons per two items (a pair of elements is compared, then the greater is compared to the maximum and the ...
Bubble sort, sometimes referred to as sinking sort, is a simple sorting algorithm that repeatedly steps through the input list element by element, comparing the current element with the one after it, swapping their values if needed. These passes through the list are repeated until no swaps have to be performed during a pass, meaning that the ...
A further relaxation requiring only a list of the k smallest elements, but without requiring that these be ordered, makes the problem equivalent to partition-based selection; the original partial sorting problem can be solved by such a selection algorithm to obtain an array where the first k elements are the k smallest, and sorting these, at a total cost of O(n + k log k) operations.