Search results
Results From The WOW.Com Content Network
The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.
In civil engineering, a transient is a short-lived pressure wave. A common example is water hammer . Transients are often misunderstood and not accounted for in the design of water distribution systems, thus contributing to hydraulic element failures, such as pipe breaks and pump/valve failures.
A flow that is not a function of time is called steady flow. Steady-state flow refers to the condition where the fluid properties at a point in the system do not change over time. Time dependent flow is known as unsteady (also called transient [8]). Whether a particular flow is steady or unsteady, can depend on the chosen frame of reference.
The wave method is based on the physically accurate concept that transient pipe flow occurs as a result of pressure waves generated and propagated from a disturbance in the pipe system (valve closure, pump trip, etc.)
Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]
These first Heisler–Gröber charts were based upon the first term of the exact Fourier series solution for an infinite plane wall: (,) = = [ + ], [1]where T i is the initial uniform temperature of the slab, T ∞ is the constant environmental temperature imposed at the boundary, x is the location in the plane wall, λ is the root of λ * tan λ = Bi, and α is thermal diffusivity.
The pressures at the nodes and the flow rates in the pipes must satisfy the flow equations, and together with nodes' loads must fulfill the first and second Kirchhoff's laws. There are many methods of analyzing the mathematical models of gas networks but they can be divided into two types as the networks, the solvers for low pressure networks ...
A flow through a conduit of constant cross-sectional area is considered to be under steady-state conditions when its velocity and pressure may vary from point to point but do not change with time. If these conditions are variable with time then the flow is known as transient. [11]